
Open Source SOA

Dr Mark Little
CTO JBoss, a division of Red Hat



2 Red Hat

Overview

• SOA in a nutshell
– Degrees of coupling
– The component triad

• Relationship to WS-*
• Open Source approach and ESBs

– Registries and repositories
– Message delivery and transformation
– Service orchestration

• Futures
– Testable architectures
– Transaction processing in a SOA



3 Red Hat

What is SOA?

• An SOA is a specific type of distributed system in 
which the agents are "services" 
(http://www.w3.org/TR/2003/WD-ws-arch-
20030808/#id2617708

• Adopting SOA is essential to delivering the business 
agility and IT flexibility promised by Web Services.

• But SOA is not a technology and does not come in a 
shrink-wrapped box
– It takes a different development methodology

– It’s not about exposing individual objects on the “bus”



4 Red Hat

Tightly coupled

• A distributed application consists of several distinct 
components

• Traditional client and server technologies based on 
RPC
– Hide distribution

– Make remote service invocation look the same as local 
component invocation

• Unfortunately this tightly coupled applications
– Such applications can be brittle



5 Red Hat

Loosely coupled

• SOA is an architectural style to achieve loose 
coupling
– A service is a unit of work done by a service provider to 

achieve desired end results for a consumer.

• SOA is deliberately not prescriptive about what 
happens behind service endpoints
– We are only concerned with the transfer of structured 

data between parties

• SOA turns business functions into services that can 
be reused and accessed through standard interfaces.
– Should be accessible through different applications 

over a variety of channels.



6 Red Hat

But …

• There are degrees of coupling and you should 
choose the level that is right for you

• At the one extreme
– Defining specific service interfaces, akin to IDL

• Easier to reason about the service
• Limits the amount of freedom in changing the implementation

• At the other extreme
– Single operation (e.g., doWork)

• More flexibility is changing the implementation
– Well, almost …

• More difficult to determine service functionality a priori 
– Need more service metadata



7 Red Hat

What about Web Services?

• Popular integration approach
– XML
– HTTP
– Pretty much universal acceptance (see bullets above!)

• Not specific to SOA
– Web Services began life as CORBA-over-HTTP
– XML-RPC

• Web Services+SOA gives benefits
– Loose coupling
– Interoperability
– Enterprise capabilities, e.g., security and transactions



8 Red Hat

Relationship to WS-*



9 Red Hat

Fortunately …

• SOA is technology agnostic
• WS-* offers the potential for interoperable SOA
• But it is just as easy to develop closely-coupled 

applications in WS-*
• Most vendor WS-* tools are direct mappings of 

distributed object tools
– SOA != distributed objects with angle brackets

• A SOA infrastructure should support and 
encourage SOA principles
– Sometimes it is easier said than done



10 Red Hat

What is an ESB?

• Depends who you ask!
– Could be JMS with MDBs
– Could be Web Services platform
– Moving towards SOA infrastructure

• Next generation EAI

• A modern ESB != an ESB from 5 years ago



11 Red Hat

ESB and SOI



12 Red Hat

What should you expect?

• SOA message-based architecture
• Various transports

– (S)FTP(S), email, HTTP(S), JMS, file, database, InVM, …
• Leveraging mature technology bases
• Task orchestration

– e.g., WS-BPEL
• Web Services

– “Zero” coding
• Adapters

– EJB(3), Spring, CICS, JCA, …
• Transformations

– XSLT
– Support for large messages

• CBR, transactions, clustering, registry/repository
• Performance, reliability, …



13 Red Hat

Repository is critical

• Service metadata, which is important for contract 
definitions
– Functional and non-functional aspects

• Transactional, secure, QoS, …
• Policies

– MEPs
• One-way
• Request-response

– Message structure
• Where data resides

– Governance

• Service binaries
• Business rules
• Workflow tasks or process control information



14 Red Hat

Services and messages

• All services are interacted with via messages
– Messages are part of the contract between client and service

• Messages do not imply specific implementations 
of carrier-protocol

• Services do not need to be bound to specific 
implementations of carrier-protocol
– Email, S-FTP, JMS, File, etc.
– More can be added as required



15 Red Hat

Standards based message delivery

• Addressed via WS-Addressing Endpoint 
References
– Transport agnostic

• Supports request-response as well as one-way 
MEP

• Mandatory to define the recipient address
• Optional

– Reply address
– Message relationship information
– Fault address



Simplifying Middleware Management for IT Administrators 

Governance



17 Red Hat

Identity management



18 Red Hat

Testable architectures

• Choreography description language
– NOT a competitor to BPEL
– Compliments orchestrations

• Provable correct distributed systems
– Design-time as well as run-time
– Should be part of any good governance strategy

• Not Web Services specific
– Ideal for SOA



19 Red Hat

Roles and relationships



20 Red Hat

SOA Blueprint Modeler



21 Red Hat

But where does it fit?

• WS-CDL is a key technology for successful SOA 
development
– Most deployments have more than 2 participants!

• Turns the discipline into engineering
– Being able to statically define interactions and simulate them 

is important
– Being able to dynamically monitor them and 

enforce/terminate interactions is a major step

• Testable architecture is core to SOA success
– Tied into SOA Platform
– Tied into SOA Development Methodology

• Being adopted by customers and partners



22 Red Hat

Fault tolerance

• Machines and software fail
– Fundamental universal law (entropy increases)
– Things get better with each generation, but still 

statistically significant
• Failures of centralized systems difficult to 

handle
• Failures of distributed systems are much 

more difficult



23 Red Hat

Fault tolerance techniques

• Replication of resources
– Increase availability

• Probability is that a critical number of resources remain 
operational

• “Guarantee” forward progress
– Tolerate programmer errors by heterogeneous 

implementations

• Spheres of control
– “Guarantee” no partial completion of work in the presence of 

failures
– Most popular implementation is ACID transactions



24 Red Hat

SOA characteristics

• Business-to-business interactions may be 
complex
– involving many parties
– spanning many different organisations
– potentially lasting for hours or days

• Cannot afford to lock resources on behalf of an 
individual indefinitely

• May need to undo only a subset of work
• Need to relax ACID properties



25 Red Hat

Transactions for SOA

• Relax isolation
– Internal isolation or resources should be a decision for the service 

provider
• E.g., commit early and define compensation activities
• However, it does impact applications

– Some users may want to know a priori what isolation policies are used
– Undo can be whatever is required

• Relax atomicity
– Sometimes it may be desirable to cancel some work without 

affecting the remainder
• E.g., prefer to get airline seat now even without travel insurance

– Similar to nested transactions
• Work performed within scope of a nested transaction is provisional
• Failure does not affect enclosing transaction



26 Red Hat

Conclusions

• SOA is an important design-time and use-time approach
– SOA is NOT a product
– Requires changes to organizational view of software components 

(services)
• Web Services are important

– Interoperability
– Internet-scale computing
– But SOA applications are not inherent in WS-*

• Open Source (e.g., JBoss SOA-P) can bridge the divide
– A single infrastructure that provides SOA support
– Open!
– Standards based


