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Introduction

[Thisintroduction is not a part of IEEE Std 1320.2-1998, | EEE Standard for Conceptual Modeling Language Syntax and
Semantics for IDEF1Xg7 (IDEFgpject )-]

Background

The need for semantic models to represent conceptual schemas was recognized by the US Air Force in the
mid 1970s as a result of the Integrated Computer Aided Manufacturing (ICAM) Program. The objective of
this program was to increase manufacturing productivity through the systematic application of computer
technology. The ICAM program identified aneed for better analysis and communi cation techniques for peo-
ple involved in improving manufacturing productivity. As aresult, the ICAM program devel oped a series of
techniques known as the ICAM Definition (IDEF) methods, which included the following:

a) IDEFO, atechnique used to produce a “function model,” which is a structured representation of the
activities or processes within the environment or system.

b) IDEFL, a technique used to produce an “information model,” which represents the structure and
semantics of information within the environment or system.

¢) IDEF2, atechnique used to produce a “dynamics model,” which represents the time-varying behav-
ioral characteristics of the environment or system.

IDEFO and IDEF1X (the successor to IDEF1) continue to be used extensively in various government and
industry settings. IDEF2 is no longer used to any significant extent.

Theinitial approach to IDEF information modeling (IDEF1) was published by the ICAM program in 1981,
based on current research and industry needs [B23].1 The theoretical roots for this approach stemmed from
the early work of Dr. E. F. Codd on relational theory and Dr. P. P. S. Chen on the entity-relationship model.
Theinitial IDEF1 technique was based on the work of Dr. R. R. Brown and Mr. T. L. Ramey of HughesAir-
craft and Mr. D. S. Coleman of D. Appleton Company, with critical review and influence by Mr. C. W. Bach-
man, Dr. P. P. S. Chen, Dr. M. A. Melkanoff, and Dr. G. M. Nijssen.

In 1983, the USAir Force initiated the Integrated I nformation Support System (12S) project under the ICAM
program. The objective of this project was to provide the enabling technology to integrate a network of het-
erogeneous computer hardware and software both logically and physically. As a result of this project and
industry experience, the need for an enhanced technique for information modeling was recognized.

Application within industry had led to the development in 1982 of a Logical Database Design Technique
(LDDT) by R. G. Brown of the Database Design Group. The technique was also based on the relational
model of Dr. E. F. Codd and the entity-relationship model of Dr. P. P. S. Chen, with the addition of the gen-
eralization concepts of J. M. Smith and D. C. P. Smith. LDDT provided multiple levels of models and a set
of graphics for representing the conceptual view of information within an enterprise. It had a high degree of
overlap with IDEF1 features, included additional semantic and graphical constructs, and addressed informa-
tion modeling enhancement requirements that had been identified under the 12S? program. Under the techni-
cal leadership of Dr. M. E. S. Loomis of D. Appleton Company, a substantial subset of LDDT was combined
with the methodology of IDEF1 and published by the ICAM program in 1985 [B15]. This technique was
called IDEF1 Extended or, smply, IDEF1X.

In December 1993, the US government released a Federal Information Processing Standard (FIPS) for
IDEF1X. FIPS PUB 184 [B13] was based on the ICAM program description of IDEF1X and additional fea-
tures originally included in LDDT. The FIPS clarified and corrected points in the ICAM publication, sepa-

1The numbers in brackets correspond to those of the bibliography items listed in Annex A.
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rated language syntax and semantics definition from practice and use issues, and provided a formal first-
order language definition of IDEF1X.

IEEE Std 1320.2-1998 continues the evolution of the IDEF1X language. It is driven by two needs. First,
development of a national standard for the language makes the definition more accessible to organizations
that do not follow US government standards and allows consideration and inclusion of features needed out-
side the US federal government sector. Second, the needs of the users of a standard change over time as sys-
tem development techniques and available technology continue to evolve. Some users adopt new concepts
earlier than others. To be valuable to the widest set of users, this standard needs to support a range of prac-
tices, from those supported by the FIPS to those that are emerging as future drivers of integration.

The change in the drivers of integration is being recognized by both government and private sector organiza-
tions. Integration involves not only data but the operations performed on that data. The emerging object
modeling approaches seek to treat all activities as performed by collaborating objects that encompass both
the data and the operations that can be performed against that data. There is increasing interest in these
approachesin both the government and private sectors. Original work done for the National Institute of Stan-
dards and Technology (NIST) in 1994 and early 1995 by Robert G. Brown of the Database Design Group
(DBDG) provides the basic elements required for a graceful evolution of IDEF1X toward full coverage of
object modeling [B5].

The DBDG work analyzed the 1993 definition of IDEF1X and compared to it to the emerging consensus
object model. The analysis showed that

— The concepts of the current IDEF1X were a subset of those of the object model,
— Thecurrent IDEF1X contained restrictions that are unnecessary in the object model, and
— The object model contains significant new concepts.

The work also showed that if the concepts of IDEF1X were more fully developed, the restrictions dropped,
and the new concepts added, the result would be an upwardly compatible object modeling technique. The
evolutionary features of IDEF1X described in this standard draw heavily from the DBDG work done for
NIST.

Base documents
The following documents served as base documents for the parts of |EEE Std 1320.2-1998 indicated:

a8 From IDEF1X to IDEFyye, 1995, by Robert G. Brown, The Database Design Group, Newport
Beach, CA, is the base document for the Class and Responsibility clauses. Partial financial support
was provided by the National Institute of Standards and Technology (NIST) [B5].

b) IDEF1Xy; Rule and Constraint Language (RCL), 1997, by Robert G. Brown, The Database Design
Group, Newport Beach, CA, is the base document for the RCL clause. Partial financial support was
provided by the Defense Information Systems Agency (DISA) [B6].

c) IDEF1Xg; Formalization, 1998, by Valdis Berzins, Naval Postgraduate School, Monterey, CA, and
Robert G. Brown, The Database Design Group, Newport Beach, CA, is the base document for the
Formalization clause. Partial financial support was provided by DISA and the Defense Modeling and
Simulations Office (DM SO) [B7].

The IDEF1X approach

A principal objective of IDEF1X isto support integration. The “IDEF1X approach” to integration focuses on
the capture, management, and use of a single semantic definition of the data resource referred to as a concep-
tual schema. The conceptual schema provides a single integrated definition of the concepts relevant to an
enterprise, unbiased toward any particular application. The primary objective of this conceptua schemaisto
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provide a consistent definition of the meanings and interrelationship of concepts. This definition can then be
used to integrate, share, and manage the integrity of the concepts. A conceptual schema must have three
important characteristics:

— It must be consistent with the infrastructure of the business and be true across all application areas.

— It must be extendible, such that, new concepts can be defined without disruption to previously
defined concepts.

— It must be transformable to both the required user views and to a variety of implementation environ-
ments.

IDEF1X is the semantic modeling technique described by 1EEE Std 1320.2-1998. The IDEF1X technique
was devel oped to meet the following requirements:

— Support the devel opment of conceptual schemas.
— Beacoherent language.

— Beteachable.

— Bewell-tested and proven.

— Beautomatable.

Organization of this document

This document begins with an explanation of the scope and purpose of this version of the IDEF1X standard.
Clause 1 also describes the evolution of the IDEF1X standard. It provides a context for understanding the
approach and constructs presented in the rest of this standard.

Clause 2 identifies additional references that must be on hand and available to the reader of this standard for
its implementation. Other documentation and related references that might be of interest to the reader or that
were used in preparing this standard are included in the bibliography (see Annex A).

This document uses words in accordance with their definitions in the Merriam-Webster’s Collegiate Dictio-
nary [B26]. A definitions clause (see Clause 3) is provided for the convenience of those not aready familiar
with the terminology in question. It also contains any terminology that has specialized meaning in the con-
text of this standard.

Clauses 4 through 6 along with 8 discuss the meaning (semantics) of each model construct that may be used
within an IDEF1X model, as well as how they shall be put together to form a valid mode (the syntax).
Clause 7 provides a full description of the Rule and Constraint Language (RCL) specification language for
an IDEF1X model.

Clause 4 introduces the language constructs of IDEF1X. The basic constructs of an IDEF1X model are

a)  Thingswhose knowledge or behavior is relevant to the enterprise, represented by boxes;

b)  Relationships between those things, represented by lines connecting the boxes,

c) Responsihilities of those things, stated as
1) Knowledge and behavior properties, represented by names within the boxes,
2) Redization of those responsibilities, expressed as sentences in a declarative language, and
3) Rules, represented as constraints over property values.

These constructs are then described in detail in Clauses 5 and 6. Clause 8 discusses how the various con-
structs may be put together to form amodel.

Two styles of IDEF1X modeling are described in this standard. Clauses 5 through 8 present the
identity style, which extends the conceptual schema representation capabilities of IDEF1X. Identity-style

Copyright © 1999 IEEE. All rights reserved. \Y



models describe the structural dimension of an object model and specify the collaborations among the
objects. Identity-style models can be used in conjunction with dynamic modeling techniques such as those
based on finite state machines.

Clause 9 describes the key style, which is backward-compatible with FIPS PUB 184 [B13]. This style may
continue to be used to produce models that represent the structure and semantics of data within an enterprise,
i.e., data (information) models.

In the process of producing FIPS PUB 184 [B13], the various graphical constructs of the IDEF1X language
were formalized. In essence, these constructs had no more meaning than they had before, but they became
more explicitly grounded than they had been. The formalization served to make obvious the fact that the
graphical aspect of IDEF1X was not the language per se but only one external manifestation of it. Clause 10
presents the formalization of the IDEF1X language, revised to include the language features defined in IEEE
Std 1320.2-1998. The formalization also provides a metamodel of IDEF1X. In addition to the metamodel
diagram, the metamodel value classes and constraints are given. The reader may wish to use this model
along with Annex D, which documents the built-in classes of the IDEF1X metamodel.

Additional normative and informative annexes provide convenient reference to supporting material:

— Annex A isabibliography of relevant reference material.

— Annex B summarizes the differences and similarities between the version of IDEF1X documented in
FIPS PUB 184 [B13] and this standard. The reader familiar with FIPS PUB 184 may wish to review
this information before proceeding into the body of |EEE Std 1320.2-1998.

— Annex C presents a set of examples illustrating various aspects of identity-style modeling. These
examples include the representation of two patterns from Design Patterns [B14], a business example
that applies these patterns, some value class examples, and the trandation of the TcCo model from
FIPS PUB 184 [B13] into an initial identity-style model.

— Annex D documents the built-in classes of the IDEF1X language.
Throughout this standard, | EEE conventions for certain words are used:

“Shall” means “required.” For example, point 5.1.2.1 @) says “A class shall be represented as a rect-
angle of the shape appropriate to the class.” This statement is interpreted as a mandatory requirement
that arectangle be the only acceptable way to represent a class.

— “Should” means “recommended.” For example, point 8.1.3.7 a) says “If the objective of the view is
that it be internally consistent, it should be possible to demonstrate that a consistent set of instances
exists” This statement means that the presentation of a set of instances is highly recommended but
not required for conformance.

— “May” means “permitted.” For example, point 5.2.3.6 c) says that “In a sample instance table, the
instance identity label may be shown to the left of the row representing the instance”

— “Can” means“is ableto.” For example, 7.5.3 states that “ The uniqueness conditions guarantee that a
message can be resolved to at most one class responsibility.”

Reading the document

The IDEF1Xg; (IDEFyjet) standard was developed to extend the practice of information modeling
(IDEF1X43) to object modeling. The readers of this standard can be broadly classified into at |east at two dis-
tinct groups: management and technical. For each group, a different approach to the reading of this standard
is recommended.
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Management readers

This standard is written on a fairly technical plane. Managers may wish to focus on the concepts that will
help them manage projects that employ this new standard. For example, modeling now will include opera-
tions on enterprise knowledge as well as rules that govern state changes. For this group of readers, Clause 1
should be read first as the key to the document. Clause 1 delimits the scope and defines the purpose of the
document, providing a succinct discussion of the evolution of IDEF1X and pointing out the capabilities
added in IDEF1X4;. As this clause points out, IDEF1Xg; is considered a transition language that preserves
the information modeling investment, provides opportunities to simplify the data/process approach, and
positions the organization to move forward.

Clause 4 should be read next. This clause provides a high level summary of the language concepts, con-
structs, and notation. The notation is not terribly significant to management; however, many of the concepts
and constructs summarized in Clause 4 will lead a management reader to further discussions of concepts and
constructs found in Clauses 5 through 8.

In the past at least two separate requirement specification languages had to be used (e.g. IDEFO, “Function
Modeling” and IDEF1Xgs, “Information Modeling” languages). The IDEF1Xg; identity-style language rep-
resents concepts in amore natural way by integrating data and process and by hiding implementation details
that sometimes become abarrier to specifying the requirements. Hiding the implementation detail (encapsu-
lation) simplifies the development and maintenance of databases and software.

Encapsulation is enabled by the concept that a class instance has responsibilities (see Clause 6) specified in
two parts: interface and realization. By revealing only the interface specification (names, meanings, and sig-
natures of responsibilities) to a client, IDEF1Xg; hides the complexity of realizations (the implementation
detail) and their specified methods and representation properties. The realization is specified separately with
the RCL so that database and software projects developed using IDEF1Xq4; can focus on specifying the
desired behavior and optimizing the messages requesting the services.

Managers should find the concept of modeling levels in Clause 8 of particular interest. Three technology-
independent levels (survey, integration, and fully specified) and one technology-dependent level (implemen-
tation) are presented to help provide clear work product definition for management.

Clause 9 and Annex B will show management how older style information modeling (IDEF1Xgz) can be
supported and extended with features of the new object language.

One of the most powerful aspects of IDEF1Xg; models is that they are, with suitable automation support,
directly executable to prove their correctness. Managers generally will not need to study the details, but
should be aware of where to find them. The executable nature is enabled by the concepts discussed in detail
in Clause 10, with a supporting RCL explained in detail in Clause 7.

Technical readers
Several groups will have primarily technical interestsin the IDEF1Xg; standard.

— Architectsand Methodologists. Readersin this group are often responsible for developing
— The structure given to database and software components, their interrel ationships, and the prin-
ciples and guidelines governing their design and evolution over time (architecture) and
— Theroutine procedures and practices used to produce precise, consistent, and repeatable deliver-
ables at the end of each stage of the development process (methodology). Generaly, this techni-
cal group uses modeling languages like IDEF1X g7 to develop architectures and methodol ogies
to guide others in building consistently high quality products.
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— Data Modelers, Object Modelers, Database Designer s, Software Engineers, and Other Practi-
tioners: Readers in this group are often responsible for defining and specifying requirements,
designing and devel oping databases and software system solutions, and then testing and implement-
ing those solutions as quickly and efficiently as possible. Generally, this technical group uses model-
ing languages like IDEF1Xq4; to develop models, designs, and products to define and satisfy
operational requirements with the highest quality databases and software at the lowest risk and cost
of maintenance.

— Commercial Software Vendors: This group includes companies that build software products and
tools to support the other technical groups. These software products and tools include
1) Database management systems, including relational, object-relational, and object-oriented,

2) Languages (procedural and object oriented),
3) Computer aided software engineering (CASE) tools, and
4) Datadictionary/repository systems.

Each of these technical groups will be more naturally satisfied by different reading patterns. Although
Clauses 1 and 4 provide an overview, readersin these groups will be most interested in the detailed technical
topical discussionsin the mgjor clauses (Clauses 5 through 10) and the annexes.

Data modelers and database designers, for example, may want to know how the new language differs from
the earlier versions of IDEF1X (Clause 9 and Annex B) and, perhaps, how to begin the transition to object
modeling and design. Object modelers will need to understand all features and capabilities of IDEF1Xqy;
identity-style modeling.

Clause 5 delineates the two types of IDEF1Xg; classes (state and value) and describes the use of generaliza-
tion and relationship concepts. For the data modelers, understanding how it is possible to use value classesin
place of domains will be of interest. Object techniciansin all technical groups will be interested in the value
class approach and in the generalization and relationship concepts: variants of these concepts exist in many
currently available object modeling and design tools and in commercia software.

If adata modeler does not intend to develop object models, Clause 6 will not be of any significant interest.
However, all other technical readers should carefully read Clause 6 to gain a core understanding of the object
constructs and the extent of their usage by IDEF1Xg,. Clause 6 introduces the concepts of responsibility,
interface, redlizations, regquests, properties, attributes, participant properties, operations, constraints, and
notes. All technical readers should study the concepts of view, view level, environment, glossary, and model
presented in Clause 8.

Clause 9 is intended for data modelers who want to or must continue the practice of key-style modeling.
Other technical readers will have little interest in this clause unless they support the older style practices or
are planning transitions from that style of practice to object-oriented technology. In these cases, a thorough
reading of Clause 9 could help with planning for changes to architectures, methodologies, and commercial
software products and tools.

For all technical readers, Clause 10 and its companion Clause 7 will present the precise definition of the lan-
guage. These clauses will be akey area of study for tool builders.
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IEEE Standard for Conceptual
Modeling Language Syntax and
Semantics for IDEF1Xg7 (IDEF,pject)

1. Overview

This standard describes the semantics and syntax of IDEF1X, a language used to represent a conceptual
schema. Two styles of IDEF1X model are described. The key style is used to produce information models
that represent the structure and semantics of data within an enterprise and is backward-compatible with the
US government’s Federa Information Processing Standard (FIPS) PUB 184, Integration Definition for
Information Modeling (IDEF1X) [B13].} The identity style is used to produce object models that represent
the knowledge, behavior, and rules of the concepts within an enterprise. It can be used as a growth path for
key-style models. Theidentity style can, with suitable automation support, be used to develop amodel that is
an executabl e prototype of the target object-oriented system.

1.1 Scope

This standard defines the semantics and syntax of IDEF1X. It does so by defining the valid constructs of the
language and specifying how they can be combined to form avalid model.

IDEFIX takes the approach that an enterprise manages what it knows about (its knowledge). Such knowl-
edge consists of awareness about enterprise-pertinent actions, facts, and the relationships among them. In
order to maximize the utility of this knowledge, it must be codified in a manner that makes its interpretation
consistent. Without this guidance, the knowledge is either not understood at all or, worse, misused to draw
unsupported or inappropriate conclusions. The guide to the interpretation and use of the enterprise knowl-
edge has three components:

a) A grammar that dictates the kinds of actions, facts, and relationships that the enterprise is interested
in recording,
b) Operationsthat can be performed on/with this knowledge to produce usable information, and

¢) Rules about recorded knowledge that help the enterprise weed out conflicting statements and rules
that govern the state changes that recorded knowledge can undergo.

1The numbers in brackets correspond to those of the bibliography items listed in Annex A.
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For example, the sentence “ The chair sings the tree” is grammatically sound in English; thereis a subject, a
verb, and an object in the sentence. However, the sentenceitself is not useful because it states something that
isnonsensical. In a natural language, rules must be established that, for instance, indicate that the subject of
the sentence must be capable of taking action, if the verb is an action, and of taking the particular action
specified by the verh.

Such a guide to the interpretation and use of the enterprise knowledge is, itself, captured as a set of facts.
This body of facts about facts, or metaknowledge, in turn needs a guide to its understanding and use. This
goal, in a nutshell, is the scope of IDEF1X. As part of its semantics and syntax, IDEF1X establishes just
what can be said about the enterprise knowledge and what sorts of conclusions can be drawn from that meta-
knowledge.

This standard does not treat methodology. A methodology is an ordered process used to produce a repeatable
result. An IDEF1X methodology deals with the process of creating a model using the IDEF1X language.
While critical to the practitioner, such considerations are beyond the scope of this standard. Rather, the
IDEF1X constructs will be presented individually, without regard for their logical sequence of use.

1.2 Purpose

This purpose of this standard is to describe the IDEF1X language in an unambiguous manner and thereby
meet two important needs. First, those who develop and use IDEF1X models need a common understanding
of the modeling constructs and rules. A precise definition of the meaning of the language components allows
amodel developed by one individual or group to be understood by another. Second, IDEF1X users must be
supported in practice by automated tools that record and validate the models. Tool developers need a precise
definition of the language so that their products assist users in applying the language correctly and allow
exchange of models, at the semantic level, with other tools.

The purpose of IDEF1X as amodeling technique is the same as that of all modeling techniques employed in
system analysis and development efforts, that is, to plan, build, or use systems and information systemsin
particular, it helps to understand the meaning of the concepts involved. Modeling provides a “language” for
meanings and is sometimes referred to as closing the semantic gap between the concepts of the enterprise
and the capabilities of the computer systems. Figure 1 summarizes the fundamental purpose of a model: to
enable accurate and useful communication among users, analysts, and devel opers as they al reason about
the same thing.

Users Analysts

Developers

Figure 1—Communication of meanings
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There are many uses for models, including process re-engineering, enterprise integration, detailed specifica-
tion, implementation, and reverse engineering. Each isimportant.

1.3 Evolution of IDEF1X

The fundamental point of view originally adopted by IDEF1X was that the world was made up of interre-
lated things and that the meaning of data devolved from an understanding of these things and their relation-
ships. This key style of IDEF1X modeling has been used over the past two decades to produce information
models that represent the structure and semantics of datawithin an enterprise. The object model expands that
point of view to include behavior. The evolution of IDEF1X has incorporated this goal of a broader under-
standing in the identity-style language introduced in this standard.

The transition from key-style to identity-style models involves bringing forward many earlier IDEF1X con-
cepts, relaxing some of the restrictions, exploiting the fundamental concepts more fully, and adding impor-
tant new concepts (see Figure 2). Each of the concepts used to produce an identity-style model is discussed
fully in Clauses 4 through 8 of this standard. Clause 9 describes how to apply these concepts to produce a
key-style model. Note that the concepts marked “unnecessary” in Figure 2 have been retained in the key-
style language for backward-compatibility with existing models and for those who wish to continue produc-
ing key-style IDEF1X models.

Object
Model

IDEF1X New
Existing Concepts
Concepts

Identity
Class & Instance Operation

Relationship \ Abstraction

Attribute \ Interface

Constraint \ Request

Generalization | Realization

Levels of Model | Dynamic Model

View . | Specification Language

Sublect Domain | Class Level Property

Environment Collection Class
Restrictions

Primary Key
Foreign Key
Identifying

Relationship

Unnecessary
for the Object
Model

Figure 2—Correspondence of concepts

1.3.1 Understanding the data/process paradigm

The requirements for a modeling language are set largely by the way in which modelers choose to view the
world. When IDEF1X was first developed in the early 1980s, the predominant system development view of
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the world was framed in terms of data and processes. The modeling approach of this data/process (D/P) par-
adigm can be summarized as follows:

a) Theworld is made up of activities and things.
b) Thingsareintegrated. Activities are free-standing.
c) Activities operate on things.

Within this approach, the primary objectives of an information modeling technique are

— To provide ameans for understanding and analyzing an organization’'s data resources,

— To provide acommon means of representing and reasoning about the data,

— To provide amethod for presenting an overall view of the data required to run an enterprise,

— To provide a means for defining an application-independent view of data that can be validated by
users and transformed into a physical database design,

— To provide amethod for deriving an integrated data definition from existing data resources.

The D/P paradigm exerted a powerful and pervasive influence over all aspects of information technology.
For IDEF the result was two distinct techniques: IDEFO for process and IDEF1X for data. Thousands of suc-
cessful systems have been developed using the D/P view of the world, and many devel opers continue to suc-
cessfully employ the techniques.

1.3.2 Understanding the emerging object-oriented paradigm

The emergence of an object-oriented (OO) view of the world has strongly influenced the evolution of
IDEF1X as described in this standard. The object paradigm takes a fundamentally different view of the
world. In this paradigm, the modeling approach can be summarized as

a) Theworldis made up of objects.

b)  Objects have knowledge and behavior.

c) Thereare no free-standing activities. Activity is accomplished by a collaboration of objects.

d) Knowledge and behavior are different aspects of the same object, considered together, behind an
abstraction of responsibility.

Within this approach, the primary objectives of a modeling technique are

— To provide a means for understanding and analyzing the objects that are of interest to the organiza-
tion,

— To provide acommon means of representing and reasoning about these objects,

— To provide amethod for presenting an overall view of the objects required to run an enterprise,

— To provide ameans for defining an application-independent view of objects that can be validated by
users and transformed into a physical design.

1.3.3 Contrasting the paradigms

The approaches of the D/P and OO paradigms are different. Magjor differences are summarized below in
Table 1. For IDEF1X, the concepts that emerge from the D/P and OO approaches are not entirely incompat-
ible. Indeed, there is a high degree of correspondence in the concepts.

While an IDEF1X model has typically been called a*“datamodel,” the term has always been something of a
misnomer; an IDEF1X model was never amodel of “data” per se. The entitiesin an IDEF1X data model are
not “data’ entities. An IDEF1X entity represented a concept, or meaning, in the minds of the people of the
enterprise. To emphasize their concern with meaning as opposed to representational issues, “data models”
like IDEF1X models are often called “ semantic data models’ or “conceptual models.”

4 Copyright © 1999 |IEEE. All rights reserved.
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Table 1—D/P and OO approaches

D/P paradigm assumptions

OO paradigm assumptions

Contrast

An entity instanceisaperson, place,
or thing (etc.) about which the enter-
prise needs to keep data.

An object isadistinct thing whose
knowledge (data) or behaviors (pro-
cesses) are relevant.

An object combines data and pro-
cess (knowledge and behavior) and
hides them behind an abstraction of
responsibility.

Thereis no free-standing data. All
datais organized around the shared
real-world entities of the enterprise.
The datais accessed by processes
and shared across applications.

Thereisno free-standing knowledge
(data). All knowledge is organized
around the shared real-world objects
of the enterprise. Each object main-
tainsits own knowledge. The knowl-
edgeis available to (modifiable by)
other objects upon request, across
applications.

In D/P, processes directly accessand
change the data of an entity. In OO,
an object must be asked for its
knowledge; that knowledge is not
directly accessible. Only the object
itself can change its knowledge.
Whether the object’s knowledge is
by memory or derivation is known
only to the object.

Processes are free-standing. Process
is organized around function,
accesses entities, and isuniqueto an
application.

Thereare no free-standing behaviors
(processes). All behavior is orga-
nized around the shared real-world
objects of the enterprise. Behavior is
the responsibility of the object and
available to other objects upon
request, across applications.

In OO, all processing is accom-
plished by the actions of objects.
An object acts by exploiting the
knowledge and behavior of itself
and collaborating objects via
reguests. Exactly what requests are
made is known only to the object.

Similar entity instances are classi-
fied into classes, and classes are
related by aggregation and generali-
zation.

Similar objects (instances) are clas-
sified into classes, and classes are
related by aggregation and generali-
zation.

Essentially the same idea, except
that the object class includes behav-
iors.

Each entity instancein aclassisdis-
tinguishable from all others by its
data values.

Each object is distinct from all other
objects—it has an intrinsic, immuta-
ble identity, independent of its
knowledge, behaviors, or class.

The OO model can recognize as dis-
tinct what the D/P paradigm treats as
indistinguishable.

There are constraints on data.

There are constraints on both knowl-
edge and behavior.

More general kinds of constraints
are needed by the object model.

Rules are incorporated by defining
processes that support them.

Rules are incorporated by defining
behaviors that support them.

The D/P and OO paradigms both
could be improved here. It would be
better if rules could be disentangled
from behaviors.

An object model is similarly a model of meaning, but it is aricher model that is closer to the ideal of a con-
ceptual model. An object model attempts to capture the meanings of the knowledge and behaviors of objects.
Yet, even state-of -practice object models still fall short of the ideal. The objects modeled are more like clerks
than executives—they do what they are told to do but are short on vision and initiative. Objects await
instruction (“Chris, put the pencil down.”) rather than possessing the ability to utilize their knowledge to
exhibit unrequested behavior. Neverthel ess, object models are, in many environments, proving to be a major
advance over the combination of separate process models and data models.

1.3.4 Expanded understanding of requirements

IDEF1X continues to meet the same requirements today that it was originally chartered to meet. However,
leveraging on the capabilities that the OO approach offers, the understanding of those requirements has
expanded. The expanded requirements can be summarized in terms of the five points of the “IDEF1X

approach”:

Copyright © 1999 IEEE. All rights reserved.



IEEE

Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

a)

b)

0)

d)

Support the development of conceptual schemas.

The conceptual schema has been characterized as those aspects of the enterprise that are invariant
across the information products of the business and implementations of the enterprise business rules
(application systems and databases). Previously, this scope had been understood to include only the
grammar of the data. Now the understanding of the scope of the conceptual schema can be seen to
include operations as well asrules.

In addition, the scope of platforms supporting applications designed using IDEF1X has broadened.
In many areas, relational database management system-based applications are slowly giving way to
ones built in some form of OO environment. For IDEF1X to remain transformable into functioning
systems, the OO concepts must be incorporated so that the IDEF1X language is semantically broad
enough to meet the needs of its users. IDEF1X needs to provide object modeling constructs appro-
priate for enterprise integration—from initial survey through implementation.

Be a coherent language.

IDEF1X has a clean, coherent structure with distinct and consistent semantic concepts. Many of the
IDEF1X constructs have a graphical manifestation because their semantics can be easily captured
that way and the resulting diagram easily read. However, as the language has evolved, not all con-
cepts have been forced into an iconic representation; some concepts simply cannot be easily
expressed graphically in amodel that remains comprehensible.

In IDEF1X, asin any language, it isimportant that those things that are said most often are said eas-
ily, while allowing capture of those statements that are difficult to express graphically. Some con-
structs are best captured in text because the semantics being represented are inherently complex.
Regardless of manifestation, graphical or textual, the language as awhole remains coherent and con-
sistent.

Be teachable.

IDEF1X datamodeling has been taught and practiced for nearly two decades. The teachability of the
language has always been an important consideration. IDEF1X has served well as an effective com-
muni cation tool across interdisciplinary teams. This rich body of experience and familiarity will not
be lost. Data models created using previous versions of IDEF1X standards will continue to be con-
formant under this new version in the key-style language. An upward migration path for existing
IDEF1X models and skill sets is provided, and training on the newer identity-style language is
expected to emerge from the marketplace.

Be well-tested and proven.

The original elements of IDEF1X were based on years of experience with predecessor techniques
and have been thoroughly tested both in US government development projects and in private indus-
try. The identity style of IDEF1X introduced in this standard has been used in a variety of industry
projects. Many of the featuresincluded in this version reflect requests and suggestions from IDEF1X
practitioners, while others reflect the best features of the emerging object modeling techniques.

Be automatable.

IDEF1X consists of modeling constructs that can be precisely defined. The constructs of the iden-
tity-style model provide the basis for tool support for representation and reasoning about OO con-
ceptual models, including direct execution of the models. With the formalization of the IDEF1X
language, automated reasoning about the knowledge and behavior modeled is arealistic expectation.

|EEE Std 1320.2-1998 addresses the evolutionary needs of users of earlier versions of the language. Evolu-
tion isa process of change. A new version of a“creation” emerges and becomes dominant or dies out based
on its suitability to the surrounding environment. During the transition, both versions of the creation will

coexist.
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S0, too, both versions of IDEF1X (D/P and OO) are supported by this standard. The key style of IDEF1X is
fully backward-compatible with FIPS PUB 184 [B13]; the use of the identity-style features is optional.
Users can migrate as needed to the expanded semantic scope characteristic of the identity-style language.

1.3.5 IDEF1X in transition

The version of IDEF1X presented in this standard is based on the object model, which is the result of the
confluence of three major branches of computer science: programming, database, and artificial intelligence.
As of the mid-1990s, there was no single, authoritative source for what constitutes the object model, but
there was a broad consensus on the core semantic concepts. Additional semantic concepts remain in flux,
and there islittle consensus on syntax and methodol ogy.

The version of IDEF1X described in FIPS PUB 184 [B13] continues to be supported by this standard and is
referred to here as IDEF1Xg;. Where necessary to distinguish it from this earlier version, the extended
IDEF1X defined in this standard (including both identity style and key style) isreferred to as IDEF1X 7.

The constructs of IDEF1X g7 were developed by

a)  Framing them in terms of organizing concepts congruent with the way people think,

b) Formalizing those concepts by assigning to each a mathematical construct such that formal opera-
tions on the constructs parallel correct reasoning about the concepts,

c)  Specifying a notation (diagrams or language) that actively supports representation, communication,
and reasoning in terms of the concepts.

The similarities between IDEF1X o3 and IDEF1X g7 are fundamental . For both, the world consists of distinct,
individual things that exist in classes? and are related to one another.

IDEF1X g7 was devel oped by relaxing some of the restrictionsin I DEF1X g3, exploiting the fundamental con-
cepts more fully, and adding some important new concepts. Each of the semantic concepts of IDEF1X g5 has
a corresponding identity-style IDEF1Xgq7 concept, but some of the IDEF1Xg; restrictions are not needed in
identity-style IDEF1Xg7. These restrictions are not basically in conflict with identity-style IDEF1Xg7__they
could be stated if there were any reason to do so. The goals and concepts of IDEF1Xg; are subsumed by
IDEF1Xg7; the essential semantic constructs of IDEF1Xg; are part of IDEF1Xg;. |dentity-style IDEF1Xg7
includes concepts that are not present in IDEF1X gs.

The identity-style IDEF1X g7 concepts are object model concepts. IDEF1Xg7 includes constructs for the dis-
tinct but related components of object abstraction—interface, request, and realization. Some of the specific
concepts of IDEF1Xg; that support abstraction are the principle of substitutability, declarative constraints,
and declarative specifications of properties.

The identity-style IDEF1Xg; constructs model objects over varying scopes and levels of refinement.
IDEF1Xg7 uses both graphics and a textual specification language. Its constructs are integrated with one
another by a consistent, declarative approach to object semantics.

1.3.6 Future direction

The scope of this version of the IDEF1X language covers semantic data and object modeling. Use of this
standard permits the construction of data and object models that may serve to support the management of
concepts as a resource, the integration of information systems, and the building of computer databases and
systems.

2Where some say “class’ and “classinstance” (or, “object”), this standard adopts the terminology “class’ and “instance.”
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1.3.6.1 Topics for future extensions

Aspects of the object model that are topics for future extensions of IDEF1X include the following:

a)

b)

0)

Dynamic models. This version of IDEF1X covers the specification of both the interface and realiza-
tion of active properties (operations) of a class. However, this version of this standard does not pro-
vide a set of graphics describing individual requests or patterns of requests.

Transaction models. There are many transaction models, and this version of IDEF1X has chosen not
to select one but rather provide only the most basic notions of stating a constraint and providing a
way to check it. Future versions of this standard may expand on the treatment of “transaction.”
Exception handling. The specification of exception handling is an important aspect of many object
languages. Future versions of this standard may incorporate exception handling into the language.

1.3.6.2 Features for expanded scope

In addition, the scope of the language may be expanded to include coverage for features frequently requested
by IDEF1X users. Typica examplesinclude

a)

b)

Rules beyond constraints. “Rule’ is a more general, and more powerful, idea than constraint. This
version of the standard deals only with constraints. A future version could incorporate a fuller treat-
ment of “rules.”

Technol ogy-dependent levels/default transformations. An important characteristic of the original
IDEF1X was the existence of adefault transformation from afully attributed model to an implemen-
tation in a database system such as IMS™, IDMS™, xBase, or relational. In addition to database
and object database transforms, the expanded coverage of IDEF1X suggests transforms into popular
object languages such as Smalltalk ", C++, and Java". From the overall management and develop-
ment point of view, providing transforms into technol ogy-specific models encouraged building mod-
elsthat are actually used. It created a very useful “practical” counterbalance to “wishful modeling.”
Enterprise integration does not come about because of modeling per se—the models have to be
used. The existence of default transformations encourages use.

1.3.6.3 Constructs for future versions

Specific constructs to be incorporated into future versions include the following:

a)
b)

©)
d)

€)
f)

9)

Importing concepts. Allow importing a concept defined in one environment into another environ-
ment.

Importing types. Allow importing a type defined in one view into another view.

Initial values. Allow the specification of initial values for instance-level and class-level attributes.
Interfaces. A class consists of an interface, which is a set of responsihilities, and a realization for
each of those responsibilities. An interface consists of just a set of public responsibilities and, if
specified independently, can be realized by many classes. A typeis either an interface or aclass. Add
support for interfaces and types as distinct from classes.

Ordered relationships. Support the specification of the ordering of instances participating in rela-
tionships.

References. Support one-way mappings to state classes in away that is symmetric with attribute and
relationship mappings.

Visibility. Support the specification of the visibility of types and their responsibilities outside their
defining view.

SAll trade or product names are either trademarks or registered trademarks of their respective companies and are the property of their
respective holders. The mention of a product in this document is for the convenience of users of this standard and does not constitute an
endorsement by the | EEE of these products.
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1.4 Conformance

This document is structured to permit its use in checking a model or modeling tool for conformance to this
standard.

1.4.1 Identity-style model conformance

An identity-style model is conforming when

a)
b)

0)

d)
e
f)
9)
h)
i)

The lexical rules conform to Clause 4,

The class (state and value), generalization, and relationship semantics, syntax and rules conform to
Clause 5,

The class (state and value), generalization, and relationship semantics conform to the semantics
defined in Clause 10,

The responsibility semantics, syntax, rules, requests, and realizations conform to Clause 6,
The responsibility and realization semantics conform to the semantics defined in Clause 10,
The RCL conformsto the language syntax in Clause 7,

The RCL semantics conform to the semantics defined in Clause 10,

The model infrastructure constructs conform to Clause 8, and

The model instantiates the language metamodel in Clause 10.

1.4.2 Identity-style modeling tool conformance

An identity-style modeling tool is conforming when

a)
b)

0)

d)
)
f)
0)
h)

i)
)

The lexical rules conform to Clause 4,

The class (state and value), generalization, and relationship semantics, syntax and rules conform to
Clause 5,

The class (state and value), generalization, and relationship semantics conform to the semantics
defined in Clause 10,

The responsibility semantics, syntax, rules, requests, and realizations conform to Clause 6,

The responsibility and realization semantics conform to the semantics defined in Clause 10,

The RCL semantics conform to the semantics defined in Clause 10,

The model infrastructure constructs conform to Clause 8,

It can be demonstrated that the tool’s metamodel maps to the language metamodel in Clause 10, that

is,

1) Thereisan onto mapping 1ang from the set of valid populations of the tool’s metamodel to the
set of valid populations of the language metamodel in Clause 10,

2) Thereisatota mapping tool from the set of valid populations of the language metamodel in
Clause 10 to the set of valid populations of the tool’s metamodel, and

3) For every vaid population 1. of the language metamodel in Clause 10, L =
lang (tool (L)),

It can be demonstrated that the tool correctly interprets RCL as specified in Clauses 7 and 10, and

Any tool extensions to the graphics or RCL can be demonstrated to be reducible to the graphics or
RCL specified in this standard.

1.4.3 Key-style model conformance

A key-style model is conforming when

a)
b)

The lexical rules conform to Clause 4, and
The model components, semantics, syntax, and rules conform to Clause 8.
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1.4.4 Key-style modeling tool conformance

A key-style modeling tool is conforming when

a) Thelexical rules conform to Clause 4, and
b) Themodel components, semantics, syntax, and rules conform to Clause 8.

2. References

This standard should be used in conjunction with the following publication. When the cited standard is
superseded by an approved revision, the revision shall apply.

|EEE Std 100-1996, | EEE Standard Dictionary of Electrical and Electronics Terms.*

3. Definitions, acronyms, and abbreviations

3.1 Definitions

Throughout this standard, English words are used in accordance with their definitionsin the latest edition of
Webster’s New Collegiate Dictionary [B26]. Technical terms not defined in Webster’s New Collegiate Dic-
tionary are used in accordance with their definitions in |IEEE Std 100-1996. Where a definition in IEEE Std
100-1996 does not reflect usage specific to this document, or if aterm used is not defined in IEEE Std 100-
1996, then an appropriate definition is provided in this clause. In some cases, a term defined in IEEE Std
100-1996 is restated in this clause where it is felt that doing so enhances the usefulness of this document.
Where aterm applies only to the key style of modeling, it has been annotated as such.

3.1.1 abstract class: A class that cannot be instantiated independently, i.e., instantiation must be accom-
plished via a subclass. A class for which every instance must also be an instance of a subclass in the cluster
(i.e., atotal cluster) is caled an abstract class with respect to that cluster.

3.1.2 abstract datatype: A datatype for which the user can create instances and operate on those instances,
but the range of valid operations available to the user does not depend in any way on the internal representa-
tion of the instances or the way in which the operations are realized. The datais “abstract” in the sense that
values in the extent, i.e., the concrete values that represent the instances, are any set of values that support
the operations and are irrel evant to the user. An abstract data type defines the operations on the data as part of
the definition of the data and separates what can be done (interface) from how it is done (realization).

3.1.3 aggregate responsibility: A broadly stated responsibility that is eventually refined as specific proper-
ties and constraints.

3.1.4 alias: An alternate name for an IDEF1X model construct (class, responsibility, entity, or domain).
3.1.5 alternate key: Any candidate key of an entity other than the primary key. [key styl€]

3.1.6 ancestor (of a class): A generic ancestor of the class or a parent of the class or an ancestor of a parent
of the class. Contrast: generic ancestor; reflexive ancestor.

3.1.7 associative class: A classintroduced to resolve a many-to-many relationship.

4|EEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, PO. Box 1331, Piscataway,
NJ 08855-1331 USA (http://standards.ieee.org/).
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3.1.8 associativelliteral: A literal that denotes an instance in terms of its value. The form of expression used
to state an associadtive literal isclassName with propertyName: propertyValue.

3.1.9 attribute: (A) A kind of property associated with a set of real or abstract things (people, objects,
places, events, ideas, combinations of things, etc.) that is some characteristic of interest. An attribute
expresses some characteristic that is generally common to the instances of aclass. (B) An attribute is afunc-
tion from the instances of a class to the instances of the value class of the attribute. (C) The name of the
attribute is the name of the role that the value class plays in describing the class, which may simply be the
name of the value class (aslong as using the value class name does not cause ambiguity).

3.1.10 attribute name: A role name for the value class of the attribute.

3.1.11 bag: A kind of collection class whose members are unordered but in which duplicates are meaning-
ful. Contrast: list; set.

3.1.12 behavior: The aspect of an instance’s specification that is determined by the state-changing opera-
tionsit can perform.

3.1.13 built-in class: A classthat is a primitive in the IDEF1X metamodel.

3.1.14 candidate key: An attribute, or combination of attributes, of an entity for which no two instances
agree on the values. [key styl€]

3.1.15 cardinality: A specification of how many instances of afirst class may or must exist for each instance
of a second (not necessarily distinct) class, and how many instances of a second class may or must exist for
each instance of afirst class. For each direction of a relationship, the cardinality can be constrained. See
also: cardinality constraint.

3.1.16 cardinality constraint: (A) A kind of constraint that limits the number of instances that can be asso-
ciated with each other in arelationship. See also: cardinality. (B) A kind of constraint that limits the number
of membersin acollection. See also: collection cardinality.

3.1.17 cast: To treat an object of one type as an object of another type. Contrast: coerce.

3.1.18 categorization: See: generalization. [key styl€]

3.1.19 category cluster: See: subclass cluster. [key style]

3.1.20 category discriminator: See: discriminator. [key style]

3.1.21 category entity: An entity whose instances represent a subtype or subclassification of another entity
(generic entity). Syn: subclass; subtype. [key style]

3.1.22 child entity: The entity in a specific relationship whose instances can be related to zero or one
instance of the other entity (parent entity). [key style]

3.1.23 class: An abstraction of the knowledge and behavior of aset of similar things. Classes are used to rep-
resent the notion of “things whose knowledge or actions are relevant.”

3.1.24 class-level attribute: A mapping from the class itself to the instances of avalue class.

3.1.25 class-level operation: A mapping from the (cross product of the) class itself and the instances of the
input argument types to the (cross product of the) instances of the other (output) argument types.
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3.1.26 class-level responsibility: A kind of responsibility that represents some aspect of the knowledge,
behavior, or rules of the class as a whole. For example, the total registeredvoterCount would be a
class-level property of the class registeredvoter; there would be only one value of registered-
VoterCount for the class as awhole. Contrast: instance-level responsibility.

3.1.27 cluster: See: subclass cluster.

3.1.28 coerce: To treat an object of one type as an object of another type by using a different object. Con-
trast: cast.

3.1.29 collabor ation:; The cooperative exchange of requests among classes and instances in order to achieve
some goal.

3.1.30 collection cardinality: A specification, for a collection-valued property, of how many members the
value of the property, i.e., the collection, may or must have for each instance. See also: cardinality con-
straint.

3.1.31 collection class: A kind of classin which each instance is agroup of instances of other classes.
3.1.32 collection property: See: collection-valued property.
3.1.33 collection-valued: A vauethat is complex, i.e., having constituent parts. Contrast: scalar.

3.1.34 collection-valued class: A class in which each instance is a collection of values. Contrast: scalar-
valued class.

3.1.35 collection-valued property: A property that maps to a collection class. Contrast: scalar-valued
property.

3.1.36 common ancestor constraint: A kind of constraint that involves two or more relationship paths to
the same ancestor class and states either that a descendent instance must be related to the same ancestor
instance through each path or that it must be related to a different ancestor instance through each path.

3.1.37 complete cluster: See: total cluster. Contrast: incomplete cluster.
3.1.38 composite key: A key comprising of two or more attributes. [key styl€]
3.1.39 conceptual model: A model of the concepts relevant to some endeavor.

3.1.40 constant: (A) (Asanoun) An instance whose identity is known at the time of writing. The identity of
a constant state class instance is represented by #K, where K is an integer or a name. (B) (As an adjective)
The specification that an attribute or participant property value, once assigned, may not be changed, or that
an operation shall always provide the same output argument values given the same input argument values.

3.1.41 constraint: (A) A kind of responsibility that is a statement of facts that are required to be true in
order for the constraint to be met. Classes have constraints, expressed in the form of logical sentences about
property values. An instance conforms to the constraint if the logical sentence is true. Some constraints are
inherent in the modeling constructs; other constraints are specific to a particular model and are stated in the
specification language. (B) A rule that specifies a valid condition of data. [key styl€]

3.1.42 contravariance: A rule governing the overriding of a property and requiring that the set of values

acceptable for an input argument in the overriding property shall be a superset (includes the same set) of the
set of values acceptable for that input argument in the overridden property, and the set of values acceptable
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for an output argument in the overriding property shall be a subset (includes the same set) of the set of values
acceptable for that output argument in the overridden property.

3.1.43 current extent: See: extensional set.

3.1.44 data model: A graphical and textual representation of analysis that identifies the data needed by an
organization to achieve its mission, functions, goals, objectives, and strategies and to manage and rate the
organization. A data model identifies the entities, domains (attributes), and relationships (associations) with
other data and provides the conceptual view of the data and the relationships among data. [key style]

3.1.45 datatype: (A) A categorization of an abstract set of possible values, characteristics, and set of opera-
tions for an attribute. Integers, real numbers, and character strings are examples of data types. [key styl€]
(B) A set of values and operations on those values. The set of values is called the extent of the type. Each
member of the set is called an instance of the type.

3.1.46 dependent entity: An entity for which the unique identification of an instance depends upon itsrela-
tionship to another entity. Expressed in terms of the foreign key, an entity is said to be dependent if any for-
eign key is wholly contained in its primary key. Syn: identifier-dependent entity. Contrast: independent
entity. [key styl€]

3.1.47 dependent state class: A class whose instances are, by their very nature, intrinsically related to cer-
tain other state classinstance(s). It would not be appropriate to have a dependent state classinstance by itself
and unrelated to an instance of another class(es) and, furthermore, it makes no sense to change the
instance(s) to which it relates. Contrast: independent state class.

3.1.48 derived attribute: See: derived property.
3.1.49 derived participant property: See: derived property; participant property.

3.1.50 derived property: The designation given to a property whose value is determined by computation.
The typical case of a derived property is as a derived attribute although there is nothing to prohibit other
kinds of derived property.

3.1.51 discriminator: (A) A property of a superclass, associated with a cluster of that superclass, whose
value identifies to which subclass a specific instance belongs. Since the value of the discriminator (when a
discriminator has been declared) is equivalent to the identity of the subclass to which the instance belongs,
there is no requirement for a discriminator in identity-style modeling. (B) An attribute in the generic entity
(or a generic ancestor entity) of a category cluster whose values indicate which category entity in the cate-
gory cluster contains a specific instance of the generic entity. All instances of the generic entity with the
same discriminator value are instances of the same category entity. [key styl€]

3.1.52 domain: Syn: valueclass.

3.1.53 dynamic model: A kind of model that describes individual requests or patterns of requests among
objects. Contrast: static model.

3.1.54 encapsulation: The concept that access to the names, meanings, and values of the responsibilities of
aclassisentirely separated from access to their realization.

3.1.55 entity: (A) The representation of a concept, or meaning, in the minds of the people of the enterprise.
(B) The representation of a set of real or abstract things (people, objects, places, events, ideas, combination
of things, etc.) that are recognized as the same type because they share the same characteristics and can par-
ticipate in the same relationships. [key style]
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3.1.56 entity instance: One of a set of real or abstract things represented by an entity. Each instance of an
entity can be specifically identified by the value of the attribute(s) participating inits primary key. [key style]

3.1.57 environment: A concept space, i.e., an areain which a concept has an agreed-to meaning and one or
more agreed-to names that are used for the concept.

3.1.58 environment glossary: See: glossary.

3.1.59 existence constraint: A kind of constraint stating that an instance of one entity cannot exist unless an
instance of another related entity also exists. [key style]

3.1.60 existence dependency: A kind of constraint between two related entities indicating that no instance
of one can exist without being related to an instance of the other. The following association types represent
existence dependencies. identifying relationships, categorization structures and mandatory nonidentifying
relationships. [key styl€]

3.1.61 extensional set: The set containing the currently existing instances of a class. The instances in the
extensional set correspond to the database and data modeling notion of instance. Syn: current extent.

3.1.62 foreign key: An attribute, or combination of attributes, of a child or category entity instance whose
values match those in the primary key of arelated parent or generic entity instance. A foreign key results
from the migration of the parent or generic entity’s primary key through a generalization structure or arela
tionship. [key style]

3.1.63 formalization: The precise description of the semantics of alanguage in terms of aformal language
such asfirst order logic.

3.1.64 framework: A reusable design (models and/or code) that can be refined (specialized) and extended
to provide some portion of the overall functionality of many applications.

3.1.65 function: A single-valued mapping. The mapping M from D to R isafunction if for any X in D and Y
inR, thereisat mostonepair [ X, Y ] inM. Syn: single-valued. Contrast: multi-valued.

3.1.66 generalization: (A) Saying that a subclass S generalizes to a superclass C means that every instance
of class s isalso an instance of class C. Generalization is fundamentally different from arelationship, which
may associate distinct instances. (B) A taxonomy in which instances of both entities represent the same real
or abstract thing. One entity (the generic entity) represents the complete set of things and the other (category
entity) represents a subtype or sub-classification of those things. The category entity may have one or more
attributes, or relationships with instances of another entity, not shared by al generic entity instances. Each
instance of the category entity is simultaneously an instance of the generic entity. [key style]

3.1.67 generalization hierarchy: See: generalization taxonomy.
3.1.68 generalization network: See: generalization taxonomy.

3.1.69 generalization structure: A connection between a superclass and one of its more specific, immediate
subclasses.

3.1.70 generalization taxonomy: A set of generalization structures with a common generic ancestor. In a
generalization taxonomy every instance is fully described by one or more of the classes in the taxonomy.
The structuring of classes as a generalization taxonomy determines the inheritance of responsibilities among
classes.
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3.1.71 generic ancestor (of a class): A superclass that is either an immediate superclass of the class or a
generic ancestor of one of the superclasses of the class. Contrast: ancestor. See also: reflexive ancestor.

3.1.72 generic entity: An entity whose instances are classified into one or more subtypes or subclassifica-
tions (category entities). Syn: superclass; supertype. [key styl€]

3.1.73 glossary: The collection of the names and narrative descriptions of all terms that may be used for
defined concepts (views, classes, subject domains, relationships, responsihilities, properties, and constraints)
within an environment.

3.1.74 hidden: A general term covering both private and protected. Contrast: public. See also: private;
protected.

3.1.751DEF1X model: A set of one or more IDEF1X views, often represented as view diagrams that depict
the underlying semantics of the views, along with definitions of the concepts used in the views.

3.1.76 identifier dependency: A kind of constraint between two related entities requiring the primary key in
one (child entity) to contain the entire primary key of the other (parent entity). Identifying relationships and
categorization structures represent identifier dependencies. [key style]

3.1.77 identifier-dependent entity: Syn: dependent entity.

3.1.78 identifier-independent entity: Syn: independent entity.

3.1.79 identifying relationship: A kind of specific (not many-to-many) relationship in which every attribute
in the primary key of the parent entity is contained in the primary key of the child entity. Contrast: noniden-
tifying relationship. [key style]

3.1.80 identity: Theinherent property of an instance that distinguishes it from all other instances. Identity is
intrinsic to the instance and independent of the instance's property values or the classes to which the instance
belongs.

3.1.81 identity-style view: A view produced using the identity-style modeling constructs.

3.1.82immutableclass. A classfor which the set of instances isfixed; itsinstances do not come and go over
time. Contrast: mutable class. See also: value class.

3.1.83 incomplete cluster: See: partial cluster. Contrast: complete cluster.

3.1.84 independent entity: An entity for which each instance can be uniquely identified without determining
its relationship to another entity. Syn: identifier-independent entity. Contrast: dependent entity. [key style]

3.1.85 independent state class: A state class that is not a dependent state class. Contrast: dependent state
class.

3.1.86 inheritance: A semantic notion by which the responsibilities (properties and constraints) of a sub-
class are considered to include the responsibilities of a superclass, in addition to its own, specifically
declared responsibilities.

3.1.87 inherited attribute: (A) An attribute that is a characteristic of a class by virtue of being an attribute

of a generic ancestor. (B) An attribute that is a characteristic of a category entity by virtue of being an
attribute in its generic entity or a generic ancestor entity. [key style]
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3.1.88 input argument: The designation given to an operation argument that will always have avalue at the
invocation of the operation. Contrast: output argument.

3.1.89 instance: A discrete, bounded thing with an intrinsic, immutable, and unique identity. Anything that
isclassified into a classis said to be an instance of the class. All the instances of a given class have the same
responsibilities, i.e., they possess the same kinds of knowledge, exhibit the same kinds of behavior, partici-
pate in the same kinds of relationships, and obey the same rules. Unless otherwise noted, instance means an
existing instance, that is, amember of the current extent.

3.1.90 instance-level attribute: A mapping from the instances of a class to the instances of avalue class.

3.1.91 instance-level operation: A mapping from the (cross product of the) instances of the class and the
instances of the input argument types to the (cross product of the) instances of the other (output) argument

types.

3.1.92 instance-level responsibility: A kind of responsibility that applies to each instance of the class indi-
vidually. Contrast: class-level responsibility.

3.1.93 interface: The declaration of the meaning and the signature for aproperty or constraint. The interface
states “what” a property (responsibility) knows or does or what a constraint (responsibility) must adhere to.
The interface specification consists of the meaning (semantics) and the signature (syntax) of a property or
constraint.

3.1.94 intrinsic: The specification that a property istotal (i.e., mandatory), single-valued, and constant.

3.1.95intrinsic relationship: A kind of relationship that is total, single-valued, and constant from the per-
spective of (at least) one of the participating classes, referred to as a dependent class. Such arelationship is
considered to be an integral part of the essence of the dependent class. For example, a transaction has an
intrinsic relationship to its related account because it makes no sense for an instance of a transaction to
“switch” to a different account since that would change the very nature of the transaction. Contrast: nonin-
trinsic relationship.

3.1.96 key migration: The modeling process of placing the primary key of a parent or generic entity in its
child or category entity as aforeign key. [key style]

3.1.97 key-style view: A view that represents the structure and semantics of data within an enterprise, i.e.,
data (information) models. The key-style view is backward-compatible with FIPS PUB 184 [B13].

3.1.98 knowledge: The aspect of an instance’s specification that is determined by the values of its attributes,
participant properties, and constant, read-only operations.

3.1.99 label: A word or phrase that is attached to or part of a model graphic. A label typically consists of a
model construct’s name (or one of the aliases) and may contain additional textual annotations (such as a note
identifier).

3.1.100 level: A designation of the coverage and detail of aview. There are multiple levels of view; each is
intended to be distinct, specified in terms of the modeling constructs to be used.

3.1.101 list: A kind of collection class that contains no duplicates and whose members are ordered. Con-
trast: bag; set.

3.1.102 literal: The denotation of a specific instance of avalue class.
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3.1.103 lowclass: If an instance isin aclass s and not in any subclass of s, then S is the lowclass for the
instance.

3.1.104 mandatory: A syntax keyword used to specify atotal mapping. Contrast: optional. See also: total.

3.1.105 mandatory nonidentifying relationship: A kind of nonidentifying relationship in which an
instance of the child entity must be related to an instance of the parent entity. Contrast: optional nonidenti-
fying relationship. See also: nonidentifying relationship. [key styl€]

3.1.106 many-to-many relationship: A kind of relationship between two state classes (not necessarily dis-
tinct) in which each instance of one class may be associated with any number of instances of a second class
(possibly none), and each instance of the second class may be related to any number of instances of the first
class (possibly none).

3.1.107 mapping: An assigned correspondence between two things that is represented as a set of ordered
pairs. Specifically, a mapping from a class to avalue classis an attribute. A mapping from a state classto a
state class is a participant property. A mapping from the (cross product of the) instances of the class and the
instances of the input argument types to the (cross product of the) instances of the other (output) argument
typesis an operation.

3.1.108 mapping completeness. A designation of whether a mapping is complete (totally mapped) or
incomplete (partial). See also: partial; total.

3.1.109 meaning: (of a responsibility) A statement of what the responsibility means. The statement of
responsibility is written from the point of view of the requester, not the implementer. The statement of
responsibility states what the requester needs to know to make intelligent use of the property or constraint.
That statement should be complete enough to let a requester decide whether to make the request, but it
should stop short of explaining how a behavior or valueis accomplished or derived. Meaning isinitially cap-
tured using freeform natural language text in a glossary definition. It may be more formally refined into a
statement of pre-conditions and post-conditions using the specification language.

3.1.110 message: A communication sent from one object to another. Message encompasses requests to meet
responsibilities as well as simple informative communications. See also: request.

3.1.111 metamodel: A metamode! Vm for asubset of IDEF; isaview of the constructsin the subset that is
expressed using those constructs such that there exists avalid instance of vm that is a description of vm itself.

3.1.112 method: A statement of how property values are combined to yield aresult.
3.1.113 migrated attribute: A foreign key attribute of a child entity. [key styl€]
3.1.114 migrated key: Syn: foreign key. [key styl€]

3.1.115 model: (A) A representation of something that suppresses certain aspects of the modeled subject.
This suppression is done in order to make the model easier to deal with and more economical to manipulate
and to focus attention on aspects of the modeled subject that are important for the intended purpose of the
model. For instance, an accurate model of the solar system could be used to predict when planetary conjunc-
tions will take place and the phases of the moon at a particular time. Such a model would generally not
attempt to represent the internal workings of the sun or the surface composition of each planet. (B) An inter-
pretation of atheory for which all the axioms of the theory are true. [logic sense]

3.1.116 model glossary: The collection of the names and definitions of all defined concepts that appear
within the views of amodel.
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3.1.117 multi-valued: A mapping that is not a function. Contrast: function; single-valued.

3.1.118 multi-valued property: A property with a multi-valued mapping. Contrast: single-valued prop-
erty.

3.1.119 multiple inheritance: The ability of a subclass to inherit responsibilities from more than one super-
class.

3.1.120 mutable class: A class for which the set of instances is not fixed; its instances come and go over
time. Contrast: immutable class. See also: state class.

3.1.121 name: A word or phrase that designates some model construct (such as a class, responsibility, sub-
ject domain, etc.).

3.1.122 named constraint: A constraint that is specific to a particular model, rather than being inherent in
some modeling construct (such as a cardinality constraint.). A named constraint is explicitly named, its
meaning is stated in natural language, and its realization is written in the specification language.

3.1.123 nonidentifying relationship: A kind of specific (not many-to-many) relationship in which some or
all of the attributes contained in the primary key of the parent entity do not participate in the primary key of
the child entity. Contrast: identifying relationship. See also: mandatory nonidentifying relationship,
optional nonidentifying relationship. [key style]

3.1.124 nonintrinsic relationship: A kind of relationship that is partial, is multi-valued, or may change.
Contrast: intrinsic relationship.

3.1.125 nonkey attribute: An attribute that is not the primary or a part of a composite primary key of an
entity. [key styl€]

3.1.126 note: A body of free text that describes some general comment or specific constraint about a portion
of amodel. A note may be used in an early, high-level view prior to capturing constraints in the specification
language; a note may further clarify arule by providing explanations and examples. A note may also be used
for “general interest” comments not involving rules. These notes may accompany the model graphics.

3.1.127 object: Syn: instance.

3.1.128 object identifier: Some concrete representation for the identity of an object (instance). The object
identifier (oid) is used to show examples of instances with identity, to formalize the notion of identity, and to
support the notion in programming languages or database systems.

3.1.129 object model: An integrated abstraction that treats all activities as performed by collaborating
objects and encompassing both the data and the operations that can be performed against that data. An object
model captures both the meanings of the knowledge and actions of objects behind the abstraction of respon-
sibility.

3.1.130 oid: See: object identifier.

3.1.131 one-to-many relationship: A kind of relationship between two state classes in which each instance
of one class, referred to asthe child class, is specifically constrained to relate to no more than one instance of
a second class, referred to as the parent class.

3.1.132 operation: A kind of property that isamapping from the (cross product of the) instances of the class

and the input argument types to the (cross product of the) instances of the other (output) argument types. The
operations of a class specify the behavior of its instances. While an attribute or participant property is an
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abstraction of what an instance knows, an operation is an abstraction of what an instance does. Operations
can perform input and output, and can change attribute and participant property values. Every operation is
associated with one class and is thought of as a responsibility of that class. No operations are the joint
responsibility of multiple classes.

3.1.133 optional: A syntax keyword used to specify a partial mapping. Contrast: mandatory. See also:
partial.

3.1.134 optional attribute: An attribute that may have no value for an instance.

3.1.135 optional nonidentifying relationship: A kind of nonidentifying relationship in which an instance
of the child entity can exist without being related to an instance of the parent entity. Contrast: mandatory
nonidentifying relationship. See also: nonidentifying relationship. [key styl€]

3.1.136 output argument: An argument that has not been specified as an input argument. It is possible for
an output argument to have no value at the time arequest is made. Contrast: input argument.

3.1.137 override: The ability of a property in a subclass to respecify the realization of an inherited property
of the same name while retaining the same meaning.

3.1.138 overriding property: A property in a subclass that has the same meaning and signature as a simi-
larly named property in one of its superclasses, but has a different realization.

3.1.139 owned attribute: An attribute of an entity that has not migrated into the entity. [key style]

3.1.140 parallel classes: A pair of classes that are distinct, are not mutually exclusive and have a common
generic ancestor class and for which neither is a generic ancestor of the other.

3.1.141 parameterized collection class: A kind of collection class restricted to hold only instances of a
specified type (class).

3.1.142 parent entity: An entity in a specific relationship whose instances can be related to a number of
instances of another entity (child entity). [key styl€]

3.1.143 partial: An incomplete mapping, i.e., some instances map to no related instance. An attribute may
be declared partial, meaning it may have no value. A participant property is declared optional as part of the
relationship syntax. An operation is declared partial when it may have no meaning for some instances, i.e., it
may not give an answer or produce aresponse. Contrast: total. See also: mapping completeness; optional.

3.1.144 partial cluster: A subclass cluster in which an instance of the superclass may exist without also
being an instance of any of the subclasses. Contrast: total cluster. See also: superclass.

3.1.145 participant property: A kind of property of a state class that reflects that class' knowledge of a
relationship in which instances of the class participate. When a relationship exists between two state classes,
each class contains a participant property for that relationship. A participant property is a mapping from a
state class to a related (not necessarily distinct) state class. The name of each participant property is the
name of the role that the other class playsin the relationship, or it may simply be the name of the class at the
other end of the relationship (as long as using the class name does not cause ambiguity). A value of a partic-
ipant property isthe identity of arelated instance.

3.1.146 path assertion: See: common ancestor constraint.

3.1.147 post-condition: A condition that is guaranteed to be true after a successful property request.
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3.1.148 pre-condition: A condition that is required to be true before making a property request.
3.1.149 primary key: The candidate key selected as the unique identifier of an entity. [key style]

3.1.150 private: A responsihility that is visible only to the class or the receiving instance of the class (avail-
able only within methods of the class). Contrast: protected; public. See also: hidden.

3.1.151 property: A kind of responsibility that is an inherent or distinctive characteristic or trait that mani-
fests some aspect of an object’s knowledge or behavior. Three kinds of property are defined: attributes, par-
ticipant properties due to relationships, and operations.

3.1.152 protected: A responsibility that is visible only to the class or the receiving instance of the class
(available only within methods of the class or its subclasses). Contrast: private; public. See also: hidden.

3.1.153 public: A responsibility that is not hidden, i.e., visible to any requester (available to all without
restriction). Contrast: hidden; private; protected.

3.1.154 RCL: See: Rule and Constraint Language.
3.1.155 read-only: A property that causes no state changes, i.e., it does no updates.

3.1.156 realization: The representation of interface responsibilities through specified algorithms and any
needed representation properties. The realization states “how” a responsibility is met; it is the statement of
the responsibility’s method. Realization consists of any necessary representation properties together with the
algorithm (if any). A realization may involve representation properties or an algorithm, or both. For example,
an attribute typically has only a representation and no algorithm. An algorithm that is a “pure algorithm”
(i.e., without any representation properties) uses only literals; it does not “get” any values as its inputs.
Finally, aderived attribute or operation typically has both an algorithm and representation properties.

3.1.157 referential integrity: (A) A guarantee that a reference refers to an object that exists. (B) A guaran-
tee that all specified conditions for a relationship hold true. For example, if aclassis declared to require at
least one instance of a related state class, it would be invalid to alow an instance that does not have such a
relationship.

3.1.158 reflexive ancestor (of a class): The class itself or any of its generic ancestors. See also: generic
ancestor. Contrast: ancestor.

3.1.159 relationship: A kind of association between two (not necessarily distinct) classesthat is deemed rel-
evant within a particular scope and purpose. The association is named for the sense in which the instances
arerelated. A relationship can be represented as a time-varying binary relation between the instances of the
current extents of two state classes.

3.1.160 relationship instance: An association of specific instances of the related classes.

3.1.161 relationship name: A verb or verb phrase that reflects the meaning of the relationship expressed
between the two entities shown on the diagram on which the name appears. [key styl€]

3.1.162 representation: One or more properties used by an algorithm for the realization of aresponsibility.
3.1.163 representation property: A property on which an algorithm operates.
3.1.164 request: A message sent from one object (the sender) to another object (the receiver), directing the

receiver to fulfill one of its responsibilities. Specifically, a request may be for the value of an attribute, for the
value of a participant property, for the application of an operation, or for the truth of a constraint. Request also
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encompasses sentences of such requests. Logical sentences about the property values and constraints of objects
are used for queries, pre-conditions, post-conditions, and responsibility realizations. See also: message.

3.1.165 respecialize: A change by an instance from being an instance of its current subclass to being an
instance of one of the other subclassesin its current cluster. Contrast: specialize; unspecialize.

3.1.166 responsibility: A generalization of properties (attributes, participant properties, and operations) and
congtraints. An instance possesses knowledge, exhibits behavior, and obeys rules. These are collectively
referred to as the instance’s responsibilities. A class abstracts the responsibilities in common to itsinstances. A
responsibility may apply to each instance of the class (instance-level) or to the class as awhole (class-leve).

3.1.167 rolename: (A) A name that more specifically names the nature of arelated value class or state class.
For arelationship, arole name is a name given to a class in arelationship to clarify the participation of that
classin the relationship, i.e., connote the role played by arelated instance. For an attribute, arole nameisa

name used to clarify the sense of the value class in the context of the class for which it is a property. (B) A
name assigned to aforeign key attribute to represent the use of the foreign key in the entity. [key styl€]

3.1.168 Rule and Constraint Language: A declarative specification language that is used to express the
realization of responsibilities and to state queries.

3.1.169 sample instance diagram: A form of presenting example instances in which instances are shown as
separate graphic objects. The graphic presentation of instances can be useful when only afew instances are
presented. Contrast: sampleinstancetable.

3.1.170 sample instance table: A form of presenting example instances in which instances are shown as a
tabular presentation. The tabular presentation of instances can be useful when several instances of one class
are to be presented. Contrast: sample instance diagram.

3.1.171 scalar: A value that isatomic, i.e., having no parts. Contrast: collection-valued.

3.1.172 scalar property: See: scalar-valued property.

3.1.173 scalar-valued class: A class in which each instance is a single value. Contrast: collection-valued
class.

3.1.174 scalar-valued property: A property that maps to a scalar-valued class. Contrast: collection-valued
property.

3.1.175 semantics: The meaning of the syntactic components of alanguage.

3.1.176 set: A kind of collection class with no duplicate members and where order is irrelevant. Contrast:
bag; list.

3.1.177 shadow class: A class presented in aview that is specified in some other view.

3.1.178 signature: A statement of what the interface to aresponsibility “looks like.” A signature consists of
the responsibility name, along with a property operator and the number and type of its arguments, if any. A
type (class) may be specified for each argument in order to limit the argument values to being instances of
that class.

3.1.179 single-valued property: A property with asingle-valued mapping. Contrast: multi-valued property.

3.1.180 single-valued: Syn: function. Contrast: multi-valued.
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3.1.181 specialize: A change by an instance from being an instance of its current class to being additionally
an instance of one (or more) of the subclasses of the current subclass. A specialized instance acquires a dif-
ferent (lower) lowclass. Contrast: respecialize; unspecialize.

3.1.182 gpecification language: See: Rule and Constraint L anguage.

3.1.183 split key: A foreign key containing two or more attributes, where at least one of the attributesis a
part of the entity’s primary key and at least one of the attributesis not a part of the primary key. [key styl€]

3.1.184 state class: A kind of class that represents a set of real or abstract objects (people, places, events,
ideas, things, combinations of things, etc.) that have common knowledge or behavior. A state class repre-
sents instances with changeable state. The constituent instances of a state class can come and go and can
change state over time, i.e., their property values can change.

3.1.185 static model: A kind of model that describes an interrelated set of classes (and/or subject domains)
along with their relationships and responsibilities. Contrast: dynamic model.

3.1.186 subclass: A speciaization of one or more superclasses. Each instance of a subclassis an instance of
each superclass. A subclass typically specifies additional, different responsibilities to those of its super-
classes or overrides superclass responsihilities to provide a different realization.

3.1.187 subclass cluster: (A) A set of one or more generalization structures in which the subclasses share
the same superclass and in which an instance of the superclassis an instance of no more than one subclass. A
cluster exists when an instance of the superclass can be an instance of only one of the subclasses in the set,
and each instance of a subclassis an instance of the superclass. (B) A set of one or more mutually exclusive
speciaizations of the same generic entity. [key style]

3.1.188 subclass responsibility: A designation that a property of a class must be overridden in its sub-
classes, i.e., the designation given to a property whose implementation is not specified in this class. A prop-
erty that is a subclass responsibility is a specification in the superclass of an interface that each of its
subclasses must provide. A property that is designated as a subclass responsibility has its realization
deferred to the subclass(es) of the class.

3.1.189 subject domain: An area of interest or expertise. The responsibilities of a subject domain are an
aggregation of the responsibilities of a set of current or potential named classes. A subject domain may also
contain other subject domains. A subject domain encapsulates the detail of a view.

3.1.190 subject domain responsibility: A generalized concept that the analyst discovers by asking “in gen-
eral, what do instances in this subject domain need to be able to do or to know?’ The classes and subject
domains in a subject domain together supply the knowledge, behavior, and rules that make up the subject.
These notions are collectively referred to as the subject domain’s responsibilities. Subject domain responsi-
bilities are not distinguished as sub-domains or classes during the early stages of analysis.

3.1.191 substitutability: A principle stating that, since each instance of a subclass is an instance of the
superclass, an instance of the subclass should be acceptable in any context where an instance of the super-
class is acceptable. Any request sent to an instance receives an acceptable response, regardliess of whether
the receiver is an instance of the subclass or the superclass.

3.1.192 subtype: Syn: subclass.

3.1.193 superclass. A class whose instances are specialized into one or more subclasses. See also: partial
cluster; total cluster.

3.1.194 supertype: Syn: superclass.
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3.1.195 syntax: The structural components or features of alanguage and rules that define the ways in which
the language constructs may be assembled together to form sentences.

3.1.196 total: A complete mapping. The mapping M from aset Dto aset R istotal if for every X in D, thereis
aleastoneY inRand pair [ X, Y ] inM. A property of aclassistotal, meaning that it will have avalue
for every instance of the class, unlessit is explicitly declared partial. Contrast: partial. See also: manda-
tory; mapping completeness.

3.1.197 total cluster: A subclass cluster in which each instance of a superclass must be an instance of at
least one of the subclasses of the cluster. Contrast: partial cluster. See also: superclass.

3.1.198 type: See: class.

3.1.199 uniqueness constraint: A kind of constraint stating that no two distinct instances of a class may
agree on the values of all the properties that are named in the uniqueness constraint.

3.1.200 unspecialize: A change by an instance from being an instance of its current subclass within a cluster
to being an instance of none of the subclasses in the cluster. Contrast: respecialize; specialize.

3.1.201 updatable argument: The designation given to an operation argument that identifies an instance to
which arequest may be sent that will change the state of the instance. An argument not designated as “ updat-
able” means that there will be no requests sent that will change the state of the instance identified by the
argument.

3.1.202 value class: A kind of class that represents instances that are pure values. The constituent instances
of avalue class do not come and go and cannot change state.

3.1.203 valuellist constraint: A kind of constraint that specifies the set of al acceptable instance values for
avalue class.

3.1.204 value range constraint: A kind of constraint that specifies the set of all acceptable instance values
for avalue class where the instance values are constrained by alower and/or upper boundary. An example of
the value range constraint isAzimuth, whichisrequired to be between —180° to +180°. A range constraint
only makes sense if thereisalinear ordering specified.

3.1.205 variable: An instance whose identity is unknown at the time of writing. A variable is represented by
an identifier that begins with an upper-case | etter.

3.1.206 verb phrase: (A) A part of the label of arelationship that names the relationship in away that a sen-
tence can be formed by combining the first class name, the verb phrase, the cardinality expression, and the
second class name or role name. A verb phrase is ideally stated in active voice. For example, the statement
“each project funds one or more tasks’ could be derived from a relationship showing “project” asthe
first class, “task” as the second class with a “one or more” cardinality, and “funds’ as the verb phrase.
(B) A phrase used to name a relationship, which consists of averb and words that constitute the object of the
phrase. [key styl€]

3.1.207 view: (A) A collection of subject domains, classes, relationships, responsibilities, properties, con-
straints, and notes assembled or created for a certain purpose and covering a certain scope. A view may
cover the entire area being modeled or only a part of that area. (B) A collection of entities and assigned
attributes (domains) assembled for some purpose. [key styl€]

3.1.208 view diagram: A graphic representation of the underlying semantics of aview.
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3.1.209 visibility: The specification, for a property, of “who can see it?’—i.e., whose methods can reference
the property. Visibility is either private, protected, or public.

3.1.210 whitespace: The nondisplaying formatting characters such as spaces, tabs, etc., that are embedded
within ablock of freetext.

3.2 Abbreviations and acronyms

ADT abstract data type

BNF Backus-Naur form

DBDG Database Design Group

DBMS database management system

DDL Data Definition Language

DISA Defense Information Systems Agency
DMSO Defense Modeling and Simulations Office
D/IP Data/Process

ER entity-relationship

FA fully attributed

FIPS Federal Information Processing Standard
GUI Graphical User Interface

122 Integrated | nformation Support System
KB key-based

LDDT Logical Database Design Technique
NIST National Institute of Standards and Technology
oid object identifier

0/e)] object-oriented

RCL Rule and Constraint Language

SQL Structured Query Language

uoD universe of discourse

4. |DEF1X language overview

IDEF1X is alanguage, and like any language it has parts of speech. For example, the classes and instances
are the nouns, and the relationships are roles that instances of one class may play relative to instances of
another class. The responsibilities are the knowledge that the classes and instances may possess, the behav-
iors that the classes and instances may exhibit, and the rules that they must obey.®> Each of these “parts of
speech” has a particular meaning and, because of that meaning, each may be combined with others only in
specific ways. For example, because of what they represent, it does not make sensein IDEF1X to haverela-
tionships between relationships. This standard establishes what the valid constructs are and which possible
combinations of IDEF1X modeling constructs constitute a valid model.

In Clauses 5 through 6 and Clause 8, the meaning of each basic IDEF1X construct isinformally described in
English, the graphic syntax for the construct (where there is one) is stated and illustrated, and any rules for
using the construct are listed.® Clause 7 provides a full specification of the RCL syntax and semantics.
Clause 10 provides a formal specification of each of the IDEF1X concepts in first-order language. Every
effort has been made to insure that the English explanation of these constructs is complete and accurate.
However, if there appears to be an inconsistency between the English description of a construct and the for-
malization or the language specification of that construct, the formalization or the language specification (in
that order) is the authoritative statement.

SConstraint is the only form of rule discussed in this version of the standard.
Rules apply to acompleted model (model construct) and not one that isin development.
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4.1 IDEF1X language constructs

This clause introduces the constructs of the IDEF1X language. Only a summary is given here; details and
numerous examples are provided in later clauses. The language constructs of IDEF1X include

a) Class. A classis an abstraction of the knowledge and behavior of a set of similar things. Anything
that is classified into a class is said to be an instance of the class. All the instances of a given class
have the same responsibilities, i.e., they possess the same kinds of knowledge, exhibit the same
kinds of behavior, and adhere to the same rules. An instance is a discrete, bounded thing with an
intrinsic, immutable, and unique identity.

Each classis either a state class or avalue class.

1) StateClass. A state class represents instances with changeabl e state. Its instances can come and
go and can change state over time, i.e., their property values can change.

2) Value Class. A value class represents instances that are pure values. Its instances do not come
and go and cannot change state.

b) Generalization. Classes are used to represent the notion of “things whose knowledge or actions are
relevant.” Since some real world things are generalizations of other real world things, some classes
must, in some sense, be generalizations of other classes. A class that specifies additional, different
responsibilities to those of a more general classis known as a subclass of that more general class (its
superclass). Each instance of the subclass represents the same real-world thing as its instance in the
superclass. The structuring of classes as a generalization taxonomy (hierarchy or network) deter-
mines the inheritance of responsibilities among classes.

c) Relationship. A relationship expresses a connection between two state classes that is deemed rele-
vant for a particular scope and purpose. It is named for the sense in which the instances are related.

d) Responsibility. An instance possesses knowledge, exhibits behavior, and obeys rules. These notions
are collectively referred to as the instance’s responsibilities. A class abstracts the responsibilities in
common to its instances. During initial model development, aresponsibility may simply be stated in
general terms and not distinguished explicitly as an attribute, participant property, operation, or con-
straint. Also, aggregate responsibilities may be specified, rather than individual properties. Broadly
stated responsibilities are eventually refined as specific properties and constraints.

1) Property. Some responsibilities are met by knowledge and behavior which, in turn, are deter-
mined by properties. A property isan inherent or distinctive characteristic or trait that manifests
some aspect of an object’s knowledge or behavior. There are three kinds of property: attributes,
participant properties due to relationships, and operations. Classes have properties; instances
have property values.

i) Attribute. An attribute is a mapping from a class to a value class. An attribute expresses
some characteristic that is generally common to the instances of a class. The name of the
attribute is the name of the role that the value class plays in describing the class, which
may simply be the name of the value class (as long as using the value class name does not
cause ambiguity ).

ii) Participant property. A participant property is a mapping from a state class to a related
(not necessarily distinct) state class. When a relationship exists between two state classes,
each class contains a participant property for that relationship. The name of each partici-
pant property isthe name of the role that the other class playsin the relationship, or it may
simply be the name of the class at the other end of the relationship (as long as using the
class name does not cause ambiguity8). The value of a participant property is the identity
of arelated instance. For a relationship in which there may be many related instances,
thereis also a participant property named as described above but suffixed with (s) , which
is amapping from the state class to a collection class in which the members of the collec-
tion are the related instances.

7 Ambiguity would exist if there were multiple mappings between a class and val ue class and different role names were not used.
8 Ambiguity would exist if there were more than one relationship between the same pair of classes and different role names were not used.
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2)

3

iii) Operation. The operations of a class specify the behavior of its instances. An operation is
a mapping from the (cross product of the) instances of the class and the instances of the
input argument types to the (cross product of the) instances of the other (output) argument
types. While an attribute or participant property is an abstraction of what an instance
knows, an operation is an abstraction of what an instance does.

Constraint. Other responsibilities are met by adhering to constraints. A constraint is a statement
of facts that are required to be true for a class or the instances of a class. Constraints are
expressed in the form of logical sentences about property values or constraints. An instance
conforms to the constraint if the logical sentence is true for that instance. Some constraints are
inherent in the modeling constructs and can be readily represented using the graphics; other
constraints are specific to a particular model and are stated in the specification language.

Note. A note is a body of free text that describes some general comment or specific constraint

about a portion of a model. A note may be used in an early, high-level view prior to capturing

constraints in the specification language; a note may further clarify arule by providing explana-
tions and examples. A note may also be used for “general interest” comments not involving
rules. These notes may accompany the model graphics.

€) Request. A request is a message sent from one object (the sender) to another object (the receiver),
directing the receiver to fulfill one of its responsibilities. Specifically, arequest may be for the value
of an attribute, for the value of a participant property, for the application of an operation, or for the
truth of a constraint.

f)  Redlization. The realization of aresponsibility specifies how the responsibility is met. A realization
isstated asalogica sentence giving the necessary and sufficient conditions that the responsibility be

met.

g) Mode infrastructure constructs. Modeled constructs are presented in views and packaged as models
that provide supporting elements of documentation such as textual descriptions.

1

2)

3)

4)

5)

View. A view is a collection of subject domains, classes, relationships, responsibilities, proper-
ties, constraints, and notes (and possibly other views) assembled or created for a certain pur-
pose and covering a certain scope. A view may cover the entire area being modeled or only a
part of that area.’

Level. A level isadesignation of the coverage and detail of aview. There are multiple levels of
view.

Environment. An environment is a concept space, i.e., an areain which a concept has an agreed-
to meaning and one or more agreed-to names that are used for the concept. Every view is devel-
oped for a specific environment.

Glossary. A glossary is the collection of the names and descriptions of all terms that may be
used for defined concepts (views, subject domains, classes, relationships, responsibilities, prop-
erties, and constraints) within an environment. A model glossary is the collection of the names
and descriptions of all defined concepts that appear within the views of a model.

Model. A model is a packaging of one or more views along with the narrative descriptions and
specification language for the view and view components (classes, responsibilities, etc.) called
out in the model’s views.

4.2 IDEF1X notation

The IDEF1X notation includes diagrams, free text, and the specification language.

a) Diagrams present the subject domains, classes, responsibilities, relationships, attributes, operations,
and congtraints of interest in aview.
b) Freetextisused for labels, statements of responsibilities, narrative description, and notes.

9 Every view automatically contains the classes, relationships, etc., of the IDEF1Xg; language metamodel, although these classes, rela-
tionships, etc., are customarily not shown in the graphics and the modeler does not declare them.
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c) The specification language is used for names, requests, statements of pre- and post-conditions, and
the realization of operations, constraints, and derived attributes.

4.2.1 Example IDEF1X diagram

Figure 3 illustrates some of the aspects of classes and relationships that are described in Clause 5. The
classeshotel and room are state classes, room is a dependent state class, and hotel is an independent
state class (see 5.2). temperature isavaue class (see 5.3). The relationship between hotel and room
says that “ each hotel contains rooms’ (see 5.5). While not shown in Figure 3, Clause 5 also discusses the
generalization of classesin 5.4.

Responsibility names, if shown, are listed inside the rectangles in the graphic diagram. Responsibilities are
described in Clause 6. This diagram does not distinguish graphically among attribute, participant, and opera-
tion properties. The annotations to do so are covered in 6.3.

Specifying the type of an attribute is optional. In Figure 3, types are shown only for the temperature
class, i.e, fahrenheit, celsius, kelvin, and rep are al of type real. Within the temperature
class, the attribute rep is marked “private” asindicated by the double bar preceding the attribute name; this
is the hidden value (which could be any one of the other values or perhaps something different entirely) that
the temperature class uses to represent temperature values.® The property guest is marked with an
(o) todesignate that avalueisoptional; that is, aroom may be vacant. The full set of suffix annotations are
covered in 6.3.

hotel temperature
availableRoomCount fahrenheit: real
room(s) celsius: real
checkln kelvin: real

| | rep: real
N

\

contains

hotel
roomNumber
temperature
guest (0)

isAvailable

Figure 3—An example IDEF1X diagram

In addition to attributes, the property list displayed for a class may include participant properties and opera-
tions. Because of the relationship between hotel and room, the class room has a participant property
named hotel, andtheclasshotel hasa participant property named room (s), wherethe (s) suffix
reflects its plural (collection-valued) nature. While Figure 3 does display these participant properties, they
are not always displayed in a diagram, as explained in 6.5. This figure also illustrates an operation,
checkIn, fortheclasshotel.

It is sometimes useful to illustrate instance examples for classes. Two methods for doing so are shown in
Figures 4 and 5. Figure 4 portrays what is referred to as a sample instance diagram. In this figure, sample
instances of hotel, room, and temperature are shown as separate shapes. Above each rectangle is

105ee 6.4.5 for adescri ption of how representation properties are used to derive the public attribute values.

Copyright © 1999 IEEE. All rights reserved. 27



IEEE
Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

written the intrinsic object identifier (oid) of the instance. Inside the rectangles are written property names
and their values. Collection-valued property instance values are shown within brackets with a literal form
appropriate to the collection class (here with curly bracesfor set).

Figure 5 showswhat is referred to as a sample instance table. The figure shows the same sample instances of
hotel, room, and temperature, thistime in the form of tables representing the classes. Columns in
each table represent properties and the cells hold property values. The oid of each instance is shown to the
left of the row representing the instance. When a property has no value, a “double dash” (--) is shown in
sample instance tables and diagrams.

In the diagrams and specification language, proper nouns denoting a specific but (at the time of writing)
unknown instance of a class are written with an initial capital letter. For example, TheHotel and R1 each
achieve the same end—standing (arbitrarily) for instances of hotel and room, respectively. Any other
nouns are written with an initial lowercase letter or surrounded by single quotes. Sample instance diagrams
and tables are discussed more fully in 5.2 and 5.3.

TheHotel T1
availableRoomCount: 1 fahr.enheit: 68
room(s): { R1, R2 } celsius: 20
kelvin: 293.16
i Il rep: 293.16
N d
- 7
R1 R2
T2
hotel: TheHotel hotel: TheHotel fahrenheit: 86
roomNumber: 101 roomNumber: 102 al rent e?i().
temperature: T1 temperature: T2 celsius:
guest: —— guest: Jones 1|<e|1v1n: '33?81.‘71166
isAvailable: true isAvailable: false reps 0.
N i
< - 7

Figure 4—Sample instance diagram

4.2.2 Example specification language

IDEF1X includes a declarative specification language called the Rule and Constraint Language (RCL).
Below are four examples of its use The specification language is fully described in Clause 7.12

4.2.2.1 Example attribute derivation specification

The specification language is used to express the realization of operations, constraints, and derived attributes
and participant properties. For example, the availableRoomCount®® derived attribute of hotel in Fig-
ure 3 has the following realization:

UThe first and third examples also illustrate that the specific (but unknown) instance in a declaration may be named in various ways,
e.g., asTheHotel or as Sel f. This standard does not proscribe any particular style. For example, while se1 £ isaform familiar toa
Smalltalk user, a C++ or Java user might have selected This.

12saveral equivalent forms for RCL are described in Clause 7. The examples throughout do not attempt to show all equivalent forms.
13saveral forms of expressing a name are allowed by the lexical rules specified in 4.2.3. Thisform is used for consistency throughout.
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hotel
availableRoomCount room(s)
TheHotel 1 {R1,R2}
room
hotel roomNumber | temperature guest isAvailable
R1 TheHotel 101 T1 - true
R2 TheHotel 102 T2 Jones false
temperature
fahrenheit celsius kelvin || rep
T1 68 20 293.1 293.16
T2 86 30 303.1 303.16

Figure 5—Sample instance tables

hotel: TheHotel has availableRoomCount: N 1ifg4.¢

AvailableRooms is [ Room where
Room is TheHotel..room(s) ..member,
Room has isAvailable ],

N is AvailableRooms..count.

TheHotel isthe instance of hotel that is the receiver of the request for the availableRoomCount
derived attribute value. The specification language says that in order for TheHotel tohavean avail-
ableRoomCount value of N, it is necessary and sufficient that

a) AvailableRooms isalist containing every Room where the Room is TheHotel’s room, and
theRoom isAvailable, and
b) NistheAvailableRooms’ count.

The specification of derived attributes and participant properties is discussed more fully in 6.4 and 6.5,
respectively.

4.2.2.2 Example operation realization specification
Another example provides a declarative specification of the operation checkIn in Figure 3.

hotel: Self has checkIn: Guest ifg.¢
Self has room(s)..member: R,
R has isAvailable,
R has guest:= Guest,

R has isAvailable:= false.

When requested, a particular hotel instance will “check in” the identified guest if the hotel has an available
room. A successful execution of the checkIn operation assigns the guest to the available room and makes
that room unavailable. The specification of operationsis discussed more fully in 6.6.
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4.2.2.3 Example constraint specification

The specification language can be used to state constraints—statements of facts that are required to betruein
order that the model conform to the world being modeled. An example of the declarative specification of the
constraint hotelOwnsTv (see Figure 70) is

tvInARoom: Self has hotelOwnsTv ifg.¢
Self..room..hotel == Self..tv..hotel.

This constraint states that atelevision in aroom has “valid ownership” if the hotel that contains the room of
this television and the hotel that owns the television are precisely the same hotel. The specification of con-
straintsis discussed more fully in 6.7.

4.2.2.4 Example query specification

The specification language is a so used to make queries (requests for property values). In Figure 3, the value
class temperature represents abstract temperatures. Each instance of temperature hasbothafahr-
enheit andacelsius value (aswell asakelvin value). The specification language sentence

T is temperature with fahrenheit: 68,
C is T..celsius.

is a query that identifies T as the instance of temperature with a fahrenheit vaue of 68 and
requests that instance’s corresponding celsius value. C iswhatever the celsius valueis for that same
instance T. If the sentence is executed, C will be solved for and found to be 20.

4.2.3 Lexical rules

A name is aword or phrase that designates some model construct (such as a class, responsibility, subject
domain, etc.). A label isaword or phrase that is attached to or part of a model graphic; it typically consists
of amodel construct’s name (or one of the aliases) and may contain additional textual annotations (such as a
note identifier). Refer to Clause 7 for the formal RCL syntax.

Free text shall be used for the names and labels of IDEF1X constructs, according to the following rules:

4.2.3.1 Naming

a Anunquoted name (i.e., a name not surrounded by single quotes) shall contain only alphanumeric
characters and underscores.

b) A quoted name (i.e., a name surrounded by single quotes) may contain any character.

¢) A gquoted name shall specify an imbedded single quote by two adjacent single quotes.

d) A simple name shall be an unquoted name or a quoted name.

€) A gqualified name shall be a series of simple names separated by colons.

f)  Thesingle quotes surrounding a quoted name may be omitted in the model graphics.

g) A name of the form #K, where K is a constant, shall be used to denote a state class instance that is
known at the time of writing (see Figure C.23)

h) A name denoting a specific but (at the time of writing) unknown instance of a class shall begin with
an uppercase | etter.

i)  Any other name shall begin with aninitial lowercase letter or shall be surrounded by single quotes.

i) A name may not exceed 254 charactersin length. All characters shall be treated as significant.

k) If avalid unquoted name begins with a lowercase letter, the name shall be considered equivalent to
the same name surrounded by single quotes.

) If anameusedin model graphicsis not avalid unquoted name, then it shall be surrounded by single
quotes when used in RCL.

m) Each keyword shall bein lowercase.
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4.2.3.2 Label

a) Except for thefirst character, alabel shall be case insensitive, i.e., “A” and “a” are equivalent.

b) A label may “wrap” and be displayed as multiple lines.

c) A label displayed outside its associated graphic box (e.g., aclass label outside its class box) may not
extend beyond the right bounding line of the graphic box.

d) A label displayed inside its associated graphic box (e.g., a class label inside its class box or a dis-
played property signature) may not extend beyond the bounding lines of the graphic box.

€) Onamultilinelabel, any annotation symboals (e.g., note numbers) shall be included at the end of the
last line of the label.

f)  All whitespace (spaces, tabs, etc.) in alabel shall be preserved.
An example of a state class |abel that includes anoteis

purchase-Order-Item (12)

An example of amulti-line relationship verb phrase label that includes anoteis

is
assigned
to (5)

5. Class

People mentally classify things that are similar in some sense into a class named for that sense and repre-
senting all such similar things. Everyone does this classification; it is part of common sense. The things that
are classified in this way are individual things, distinct from all other things. A class is an abstraction of the
knowledge and behavior of a set of similar things.

5.1 Introduction

There are two kinds of class; state class and value class.2* The distinction is introduced in 5.1.3 and more
fully discussed in 5.2 and 5.3, respectively. This subclause describes the concepts that apply to the concept
of classin general.

Anything that is categorized into a classis said to be an instance of the class. An instance possesses knowl-
edge, exhibits behavior, and obeys rules. These notions are collectively referred to asthe instance's responsi-
bilities. A class abstracts the responsibilities in common to its instances. Initially, a responsibility may
simply be stated in general terms and not distinguished explicitly as an attribute, participant property, opera-
tion, or constraint. Also, aggregate responsibilities may be identified, rather than individual properties.
Broadly stated responsibilities are eventually refined as specific properties and constraints. In addition to
these instance-level responsibilities, a class may aso have class-level responsibilities in the form of
attributes, operations, and constraints. These class-level responsibilities constitute the knowledge, behavior,
and rules of the class as awhole. Responsibilities are described in detail in Clause 6.

5.1.1 Class semantics

5.1.1.1 Identity

Each instance is considered to have a unique, intrinsic identity that is independent of its property values or
the classes to which it belongs. It is an instance’s unique identity that distinguishes it from al other

instances.

WThis distinction is explicitly made in “The Evolution of Domains’ [B4] and ODMG-93 [B11] where state classes and value classes
arereferred to mutable and immutable classes, respectively. However, this distinction is often left implicit in object model formulations.
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The notion of identity isfirst of al a concept. Some concrete representation for the concept must be used to
show examples of instances with identity, to formalize the notion of identity, or to support the notion in pro-
gramming languages or database systems. This concrete representation is referred to as the intrinsic oid of
the instance.

5.1.1.2 Intension/extension

The notion of class has an intensional and an extensional aspect. The intension reflects the sense of the class.
Theintensional set isdetermined by the meaning of the class. All possible thingsthat are similar in the sense
of the class are members of the intensional set.

The extensional set of instances contains the currently existing instances. The extensional set is aways a
subset of theintensional set.!® Theinstancesin the extensional set correspond to the database and data mod-
eling notion of instance. The extensional set is sometimes called the current extent. Unless otherwise noted,
instance means an existing instance, that is, a member of the current extent.

5.1.1.3 State class/value class

A state classisonein which the extensional set of instancesis atime-varying subset of the intensional set of
instances. An instance changes state when it is born, when it takes on attribute or participant property values,
when it changes those values, or when it dies. A class of such instances is called a state class. The class
registeredvVoter is an example of a state class. The extensional set of registered voters varies over
time.Chris Jones could be an instance of the state class registeredvoter at any particular time.

Instances that do not change state are pure values. A class of such instancesis called avalue class. A value
classisonein which the extensional set of instancesisfixed and equal to the intensional set of instances. The
instances act as pure values, like an integer or a mathematical set. It makes no sense to have duplicate
instances—thereisonly one 17, only one 0, only one empty set, and so on. Because the instances of avalue
class act like values, avalue class instance is sometimes called avalue, but it is still an instance.

Value class instances cannot be created, updated, or deleted. It makes no sense to update 1 7; it would not be
17 any more. If a mathematical set has a member removed or a new one is added, it is not the same set any
more. Everyday examples of value classes include date and time. Again, “updating” a date or a time
makes no sense; it would yield a different date or time, not the same one changed in some way.

Everything that is said about classes, instances, and properties applies to both state and value classes unless
specifically restricted. For example, value classes do not participate in relationships. Also, the representation
of identity is typically different for state and value classes—for state classes, the identity is represented by
the intrinsic identifier; for value classes, the identity is represented by the value. The details of state classes
and value classes are discussed in detail in 5.2 and 5.3, respectively.

5.1.1.4 Abstract data type

A class can be considered an abstract data type. Traditionally, an abstract data type (ADT) is a datatype for
which the user of the data type can create instances of the data type and operate on those instances, but for
which the range of valid operations available to the user does not depend in any way on the internal repre-
sentation of the instances or the way in which the operations are realized. The data is abstract in the sense
that valuesin the extent, i.e., the concrete values that represent the instances, are

— Any set of values that support the operations, and
— Irrelevant to the user.

B5This fact forms the foundation of information. Otherwise, everything that could possibly be true is in the database rather than just
those things that are presently true.
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An ADT identifies the operations on the data as part of the specification of the data and separates what can
be done (the interface) from how it is done (the realization).1®

For example,!” the interface declaration of the value class temperature specifies

— A way to denote a unique temperature by its Fahrenheit or Celsius or Kelvin value, and
— Operations to obtain the Fahrenheit, Celsius and Kelvin values.

The realization of temperature specifies

— Whether the temperature is to be represented by its Fahrenheit or Celsius or Kelvin value, and
— The appropriate rules for each operation, depending on the representation choice.

The nature of the abstract values in the extent of the temperature value class is exemplified by the sen-
tence “32 Fahrenheit is the same thing as 0 Celsius” That thing is the instance of temperature. When the
fahrenheit operation isapplied to theinstance, it yields 32. When the ce1sius operation is applied to
the sameinstance, it yields 0.

For another example, the interface declaration of the value class vector specifies

— A way to denote a unique vector by its coordinate values or by its magnitude and direction,
— Operations to obtain the values of the coordinates, magnitude, and direction, and
— Operations such as adding a vector to a vector.

The realization of the value class vector specifies

— Whether the vector is to be represented by coordinate values, or by magnitude and direction values,
and
— Therulesfor each operation.

5.1.1.5 Built-in class/user-defined class

A few classes, such asobject, class, integer, real, string, and 1ist, areassumed to be built-
in to the IDEF1X language. These classes provide properties such as instance creation, instance deletion,
access to the instances of a class, and numeric, string, and list operations. Classes that are not built-in are
user-defined. The built-in state classes and built-in value classes are presented in Clause 10 and Annex D.

5.1.1.6 Collection class

The typical class represents instances that are atomic. Some classes, however, have instances that are them-
selves collections of other instances. Such aclassis called a collection class. A collection classis akind of
class in which each instance is a group of instances of other classes. Examples of collection classes are
list, set,and bag.

5.1.1.7 Parameterized collection class

The built-in 1ist, set, and bag collection classes are untyped, i.e., their instances can be collections of
anything. However, a collection class can be restricted to hold only instances of a specified type (class). This
kind of collection classis called a parameterized collection class, a class in which a parameter specifies the
class of the instances that the collection may contain.

16 «|nterface” and “realization” are explained in 6.1. See also [B12)].
1T hese examples are devel oped further in 5.3, 6.4, and 6.6.
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The built-in collection classgenerators 1ist ( T ),set ( T ),andbag ( T ) permittyped collec-
tion classes to be specified. A classis “generated” in the sense that the classes set ( real ) and set
( integer ) aretwo distinct classes, not a single class with a parameter variable. For example, the
instances of set ( real ) are restricted to be sets of real numbers. The collection class set
( integer ) isadifferent collection class; itsinstances are restricted to be sets of integers.
The parameter, T, can be any built-in or user-defined class. All the properties and constraints of the built-in
collection classes apply to the generated collection classes. (See Clause 7 for a further discussion of collec-
tion classes.)
5.1.1.8 Parameterized pair class
The built-in pair classis untyped, i.e., itsinstances can be pairs of anything. However, a pair class can be
restricted to hold only instances of specified types (classes). Thiskind of pair classis called a parameterized
pair class, aclassin which two parameters specify the classes of the instances that the pair may contain.
The built-in pair class generator pair ( T1, T2 ) permitstyped pair classesto be specified. A classis
“generated” in the sense that the classes pair ( real, integer ) and pair ( integer,
string ) aretwo distinct classes, not asingle class with parameter variables.
The parameters, T1 and T2, can be any built-in or user-defined classes. All the properties and constraints of
the built-in pair class apply to the generated pair classes. (See Clause 7 for a further discussion of pair
classes.)
5.1.2 Class syntax
5.1.2.1 Graphic

a) A classshal berepresented as arectangle of the shape appropriate to its class.
The shapes for state class are specified in 5.2.2.1. The shape for value classis specified in 5.3.2.1.
5.1.2.2 Label

a) Eachclassdisplayedin aview shall be assigned alabel.
b) Thelabel of aclassinaview shall consist of the class name or one of its aliases.

The syntax for state class labeling is specified in 5.2.2.2. The syntax for value class labeling is specified in
53.2.2.

5.1.2.3 Sample instances
a) For every model it shall be possible to present sample instances that validate the model.
b)  When provided, sample instances shall be presented in one of two forms, as a sample instance dia-

gram or sample instance table.

The representation of sample instances of a state classis specified in 5.2.2.3 through 5.2.2.6. The representa-
tion of sample instances of avalue classis specified in 5.3.2.3 through 5.3.2.6.

5.1.3 Class rules
5.1.3.1 Naming

a) A classshal have both asimple (unqualified) name and afully qualified name.
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b) Thesimple name of aclass shall be a noun or noun phrase.
¢) A class shal be given a simple name as one would refer to a single instance of the class. Typically
that nameis singular in form, not plural.
For example, an instance of a state class may represent a set of things. If a state class instance repre-
sents a collection of things, asin a set of playing cards, a plura noun (e.g., cards ) could be used
for the state class name (although a singular form such as de ck would also be appropriate).
For example, an instance of a value class may have a list as its internal representation. If a value
class instance is plural, as in a set of coordinates, a plural noun (e.g., coordinates ) would be
appropriate for the value class name.
d) A classshall have afully qualified name, 8 as follows:
1) The fully qualified name of a class with a simple name Csn in a view named vn shall be
Vn:Csn.
2) Thefully qualified name of a class with the simple name Csn in a view with no parent view
shall bejust Csn.

5.1.3.2 Responsibilities

a) A class may have any number of responsibilities.

5.2 State class

A state class™® represents instances with changeable state. Its instances can come and go, and can change
state over time, i.e., their property values can change.

A state classis a class that represents a set of real or abstract objects (people, places, events, ideas, things,
combinations of things, etc.) that have common knowledge and behavior and adhere to common constraints.
Anindividual member of the set isreferred to as a state class instance (ssimply, instance). A real world thing
may be represented by more than one state class. For example, John Doe can be an instance of both the
state class employee and the state class buyer. Furthermore, an instance may represent a concept involv-
ing a combination of real world things. For example, John and Mary could be the participants in an
instance of the state classmarriedCouple.

5.2.1 State class semantics
5.2.1.1 Instance identity

For astate class, an oid represents the concept of identity. In terms of a representation system (i.e., the exam-
ples, formalization, or software), the oid stands for the instance. In a sample instance diagram or sample
instance table of state class instances, each row has an associated oid. For example, oids are shown in the
sample instance diagram in Figure 13 and the sample instance tables in Figure 14. Note that an oid is not an
attribute; the oid is always hidden from the client.

5.2.1.2 Independent state class/dependent state class

A state class instance is distinguished from all other instances of its class because of its intrinsic identity;
that is, the typical state class is considered to be an independent state class. Its instances have existence,
knowledge, and behavior independent of other instances. However, there may be cases where it makes no
sense to have a class instance by itself and unrelated to an instance of another class(es) and, furthermore,
where it makes no sense to change the instance(s) to which it relates. This type of classis referred to as a

183ee als08.1.3.1 and 10.7.2.
19 “grate class” is not to be confused with the notion of a* state machine”
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dependent state class. A dependent state class instance is by its very nature intrinsically related to certain
other state class instance(s).%

Both cases are illustrated in Figure 6. In this example, room is a dependent state class, dependent on the
independent state classhotel. A room of the hotel cannot exist without its hotel. It makes no sense to sep-
arate the room from the hotel; the room would not exist. Furthermore, a hotel room isintrinsically a part of
some one specific hotel (at least in the example), and it makes no sense to change it to a different hotel—to
do so would yield a different hotel room, not the same one changed.

hotel

contains

room

Figure 6—Independent and dependent state classes

State class dependency can be expressed more precisely. A state class d is dependent on ancther state class ¢
if and only if every instance D of d isrelated to exactly one instance of ¢, and D cannot be updated to be
related to any other instance of ¢ or to no instance.

The distinction between “independent” and “dependent” has historically proven useful in IDEF1X model-
ing. In building a model, the independent state classes usually emerge first. In seeking to understand a

model, a familiarity with the independent classes is required before the meaning of the dependent classes
can be understood.

5.2.2 State class syntax
5.2.2.1 Graphic

a) A state class shall be represented as arectangle.
b)  Anindependent state class rectangle shall have square corners, asillustrated in Figure 7.
¢) A dependent state class rectangle shall have rounded corners, asillustrated in Figure 7.

Independent State Class

Dependent State Class

)

Figure 7—State class syntax

20Although an instance of a state class may depend on another instance, it still hasits own identity, as indicated previously.
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5.2.2.2 Label

a) Asshownin Figures 8 and 9, the state class label shall be placed either

1) Above or inside the rectangle, when no names (responsibilities, property names, or constraint
names) are shown, or

2) Above the rectangle, when names (responsibilities, property names, or constraint names) are
shown inside the rectangle.

b)  When placed outside the box, the state class label shall be left-justified and aligned with the | eft side
of the box.

¢) When placed inside the box, the state class label shall be centered inside the box.
d) Responsihilities, property names, and constraint names placed inside the state class box shall beleft-

justified.
For example:
state class name hotel
For example:
state class name hotel

For example
(showing property names):

state class name

hotel
Responsibilities (cl) overbookPercentage
Property Names availableRoomCount
‘ room(s)
Constraint Names checkln

Figure 8—Alternatives for independent state class labeling

5.2.2.3 Sample instance identity label
In providing illustrative examples of instances, it is useful to have away of representing an instance's identity.

a) Theidentity of an instance that is a variable—i.e., an instance unknown at the time of writi n921—
shall begin with an uppercase letter, such as
X
TheHotel
Self

21 variable represents a named but unknown value. This concept can be illustrated by analogy. In stylized English, the phrase “...the
sale consummated by the seller (Seller) and the purchaser (Purchaser)...” may be used in writing a standard contract where the identity
of the specific Seller was unknown at the time of writing. The originally indefinite references are definite on a signed contract, where
Seller and Purchaser are identified as real parties. Similarly, the use of a variable denotes a specific individual—just which individual is
unknown at the time of writing.
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b)

0)

d)

For example:

state class name room

For example:

state class name room

For example
(showing property names):

state class name room
Responsibilities hotel
roomNumber
Property Names temperature
guest (0)

Constraint Names s Available

Figure 9—Alternatives for dependent state class labeling

The identity of an instance that is a constant—i.e., an instance known at the time of writing—shall
be represented by #K, where K isaconstant. This representation of a constant oid is most generally
used in sample instance tables or diagrams, as shown in Figure C.23.
The state class name of the instance may be included along with its identity. In this form, the class
name shall precede itsidentity and shall be followed by a colon, such as

hotel: TheHotel
An unnamed, unknown instance shall be indicated by omitting the identity portion and including
only the state class name of the instance, such as

hotel

5.2.2.4 Sample instance property

38

a)
b)

0)

d)

e)

f)

0)

Any relevant property of theinstance, either direct or inherited, may be shown for a sample instance.

The sample instance property shall have two parts:

1) A sampleinstance property label, and

2) A sampleinstance property value.

While the sample instance property label is typically the property name, the sample instance prop-
erty label may be any RCL expression over properties of that class, eg., principal + inter-
est.

The sample instance property value shall be the value to which the expression evaluates for the
instance. If the expression value pair ist: V,then Self has E: Vv shall hold where

1) self istheidentity of theinstance (for instance properties), or

2) selfistheclass (for class properties).

A sampleinstance property having no value shall beindicated by “--" (adouble dash).

A collection-class-valued sample instance property value shall be represented by a collection class
literal (such as that for a set using curly brackets), with the multiple values separated by commas
(see Figures 13 and 14).

A multi-valued sample instance property value shall be represented by multiple values separated by
spaces.
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5.2.2.5 Sample instance diagram
In asample instance diagram, instances are shown as separate shapes.

a) Inasample instance diagram, an instance shall be represented by an open-stacked rectangle of the
kind appropriate to its class, as shown in Figure 10. Each rectangle is either
1) Anopen-stacked rectangle (if the instance belongs to an independent state class), or
2) Anopen-stacked rounded rectangle (if the instance belongs to a dependent state class).
b) Inasampleinstance diagram, the instance's identity label shall be placed either
1) Insidethe rectangle (when no responsihilities, property names, or property name value pairs are
shown), or
2) Above the rectangle (when sample instance properties are shown inside the rectangle).

State Class Instance Diagram

Oid

Instance
0id Properties

Dependent State Class Instance Diagrams

Oid

Instance
Properties

Oid

Figure 10—State class instance diagram syntax

¢) Inasampleinstance diagram, a sample instance property shall be written as
property label: sample property value
d) Thevaues of class-level properties shall be shown in an unstacked box, labeled only by the class
name, as shown in Figure 11.
€) An dternative form of syntax shall be available for a state class instance diagram. This form shall
use only a reference to the state class to represent an unnamed, unknown instance, as illustrated in
Figure 12.

The example in Figure 13 shows two instances of room and a single instance of hotel (with the value of
hotel’sclasslevel property).

5.2.2.6 Sample instance table

A second form of showing sample state class instances is as a sample instance table. This tabular presenta-
tion of instances can be useful when several instances of one class are to be presented. The conventions for a
sample instance table are illustrated in Figure 14, which depicts the class hotel, one instance of hotel,
and two instances of room.

a) Inasampleinstancetable, the class name shall be placed above the table.
b) Inasampleinstance table, instances shall be shown as rowsin atable representing the class.
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State Class Class-level Property Instance Diagram

class name

Class-level
Properties

Dependent State Class Class-level Property Instance Diagrams

class name

Class-level

Properties

Figure 11—Class-level property instance diagram syntax

State Class Instance Diagram

state class name

Properties
state class name

Dependent State Class Instance Diagrams

state class name

Properties
state class name

NS

Figure 12—State class instance diagram alternative syntax

¢) Inasampleinstance table, the instance identity label may be shown to the left of the row represent-
ing the instance.

d) In asample instance table, each property shall be represented by a column where the column is
named by the sample instance property label. Each cell shall display the sample instance property
value that is associated with the row (instance).

€)  When theinstance table displays class instances as its rows, a double line shall separate the property
name column headings from the first instance row.

f)  When theinstance table displays class-level properties, asingleline shall separate the property name
column headings from the class property row, and the values of class-level properties shall be shown
in this single row without an oid.
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TheHotel hotel

availableRoomCount: 1 overbookPercentage: 110

room(s): { R1, R2 }

R1 R2

hotel: TheHotel

roomNumber: 102
uest: Jones

isAvailable: false

hotel: TheHotel
roomNumber: 101
guest: --
1sAvailable: true

NS NS

Figure 13—Sample state class instance diagram

hotel hotel
availableRoomCount room(s) overbookPercentage
TheHotel 1 {R1,R2) 110
room
hotel roomNumber guest isAvailable
R1 TheHotel 101 - true
R2 TheHotel 102 Jones false

Figure 14—State class sample instance tables

5.2.3 State class rules

There are no rules for state class, beyond those that apply to classin general.

5.3 Value class

A value classisakind of class representing instances that are pure values; there are no duplicate values, and
it makes no sense to update a value. The instances of a value class do not come and go and cannot change
state, i.e., avalue classisan immutable class. A value class has afixed, and possibly infinite, set of instances.
By contrast, astate classis atime-varying (mutable) class; the instances of a state class vary over time asthe
datais modified and maintained.

Asinstances of animmutable class, value class instances always exist in principle. For example, in the value
classdate, all instances of date exist, although some particular value of date might not be mapped to by
an instance of any state class. Another example of avalue classis temperature; the set of alowable val-
ues for this value class would satisfy the definition of “a degree of heat or cold.”
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5.3.1 Value class semantics
5.3.1.1 Instance identity

Theidentity of an instance within the value classis equivalent to its value. More precisely, the identity of an
instance is equivalent to the abstract value of the instance. The abstract value is represented by the values of
hidden, encapsulated attributes. These values need be unique only within the class. Globally, an instance of a
value class can be identified by the combination of its class and its representation. In terms of a representa-
tion system (i.e., examples, formalization, or software), the combination of the class and its representation
uniquely identifies at most one instance of the class.

A value class uses one or more other value classes as its hidden, encapsulated representation of an instance.
The temperature class may use area number asits hidden representation, known only to the temper-
ature class to be a Kelvin temperature. The date class may use an integer as its hidden representation,
known only to the date class to be the number of days from a time zero (also known only to the date
class). The representation hierarchy eventually terminates at a few predefined value classes, such as real,
integer, string, boolean, €tc

5.3.1.2 Literal

In IDEF1X, a literal denotes a specific instance of a value class. A primitive (base) value class such as
integer hasastandard form of literal symbol (e.g., 17 or 3) that is readily recognized and understood.

5.3.1.3 Associative literal

For a user-defined value class, there must be a provision for referring to an instance. An associative literal
denotes an instance in terms of its value. The form of expression used to state an associative literal is either

className with propertyName: propertyValue
or
className (propertyName (propertyValue) )

where propertyName isthe sole constituent of a uniqueness constraint. In other words, no two instances
of the class are permitted to have the same value for the named property.

The meaning of an associative literal is that the instance being referenced is the instance that has the value
for the named property. For example,

temperature with fahrenheit: 68
denotes a specific instance of the value class temp, and
temperature with celsius: 20

denotes the same instance. They are both ways of denoting an instance (and the same instance). In fact, even
though 7 by itself isareadily understood literal, it is simply a shorthand way to say

integer with arabic: 7

which is equivalent to
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integer with base2: 111.

A literal may also be stated using aliteral expression, in the form of either

className with ( propertyNamel: propertyValuel, ...propertyNameN:
propertyValueN )

or

className (propertyNamel (propertyValuel),
propertyNameN (propertyValueN) )

wherepropertyNamel through propertyNameN are the constituents of a uniqueness constraint. In other
words, no two instances of the class are permitted to have the same values for the properties. For example,

vector with ( x: 100, z: 17 )

denotes a specific instance of the value classvector, and

date with ( month: 1, day: 10, year: 1995 )

denotes a specific instance of the value class date.?
5.3.1.4 Atomic/complex

A value class may represent either atomic data or complex data.® Atomic data is an indivisible whole and
contains no constituents. Atomic data include things like bit, integer, real, or character. An
atomic value, like 17, entails no additional data and represents itself.

Complex data is data that contains data where

a) Thecongtituent datais atomic or complex, and
b) Both the data as awhole and its constituents are accessed and operated on.

In this respect, alternative representations are considered constituent properties.
Complex datainclude things like temperature, vector, time, and timeSpaceState.

— ‘“temperature” iscomplex because it must be represented by other data—Fahrenheit, Celsius, or
Kelvin temperatures. Any one of them can be used to represent the abstract temperature. Whichever
is used, the other two can be derived and all three are considered constituents of temperature. Any
datain which the unit of measure is abstracted away is complex data that includes among its constit-
uentsits value in each unit of measure. One is used as representation; the others are derived.

— “vector” iscomplex because it includes, by definition, the constituents magnitude and direction. It
may also contain the x,y coordinates. Either the magnitude and direction or the x,y coordinates can
be used to represent the vector, and the others derived.

— “time” iscomplex becauseit has alternate units of measure.
— “timeSpaceState” iscomplex becauseit contains constituents, each of which is complex.

2p ssociative literals may be used for a state class aswell. For a state class, any property may be used in the associative literal .

ZThereare many variations of complex data. Value classes provide a good solution for certain kinds of complex data. State classes pro-
vide agood solution for other kinds of complex data, such as bill-of-materials data or engineering design data.
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Whether a given value class is atomic or complex depends on the context. An integer would usually be con-
sidered atomic. But in amodel of the arithmetic unit of a computer, an integer might be considered complex
(consisting of hits) in order to specify addition in terms of bit operations.

Both atomic and complex value classes are immutable in the sense that “changing” a value is logicaly
impossible—that would make it a different value. Just as it makes no sense to change 17, it makes no sense
tochangethevector with ( x: 100, y: 17 );if any coordinate value is changed, theresultisa
different vector. In other words, the combination of x,y coordinate values is unique to a single vector. The
combination of magnitude and direction is also unique to a single vector.

Each kind of value class can have operations that apply to it. Operations on complex data are carried out by
operating on their constituent data. For example, the vector add operation can be carried out by adding the
X,y coordinates of the two vectors.

5.3.1.5 Instance value constraint

A value class may have a declared value constraint. An instance value constraint specifies the acceptable
values of a value class. Two examples of an instance value constraint are the value list constraint and the
value range constraint.

a) The value list constraint specifies the set of al acceptable instance values for a value class.
Attributes that represent a mapping into a value class with a value list constraint are only valid if
their instance values are a part of the value list. A common use of this constraint is to enumerate a
list of coded values such as dayOfWeek, i.e, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday.

b)  The value range constraint specifies the set of all acceptable instance values for a value class where
the instance values are constrained by alower and/or upper boundary. An example of the value range
constraint is Azimuth, which is required to be between -180° to +180° Another example is
temperature, which must be above absolute zero. A range constraint only makes sense if there
isalinear ordering specified.?*

The instance value constraint for a value class is optional; it may be left unspecified. In this case, the value
classisonly constrained by the constraints associated with its data type or those of its superclass, if the value
classhaseither (see5.4). “title” isan example of avalue class without an instance value constraint; it can
take on any allowable character string.

5.3.2 Value class syntax

5.3.2.1 Graphic

a) A value class shall be represented as a rounded rectangle with a double base line, as illustrated in
Figure 15.

N /

Figure 15—Value class syntax

XThe typical value range constraint orders numbers and strings, but there can be other things (e.g., color) where some form of range
constraint might be desired. However, if there is no ordering of the values, no “range” can be expressed. Therefore, to specify arange
constraint, the notion of ordering, achievedby aless than (or greater than ) operationinthevalueclass, isrequired.
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5.3.2.2 Label

a) AsshowninFigure 16, the value class label shall be placed either
1) Above or inside the rectangle when no names (responsibilities, property names, or constraint
names) are shown, or
2) Above the rectangle when names (responsibilities, property names, or constraint names) are
shown inside the rectangle.

b)  When placed outside the box, the value class |abel shall be |eft-justified and aligned with the left side
of the box.

¢)  When placed inside the box, the value class label shall be centered inside the box.

d) Responsibilities, property names, and constraint names placed inside the value class box shall be
left-justified.

For example:
value class name temperature

T

\

For example:

value class nhame ( temperature

N / N 4

For example:
value class name temperature
Responsibilities far;renheit: 1eal
celsius: rea

Property Names kelvin: real
Constraint Names || rep: real

N 4 N 4

Figure 16—Alternatives for value class labeling

5.3.2.3 Sample instance identity label

In providing illustrative examples of instances, it is useful to have away of representing an instance’s identity.
a) Theidentity of avalue classinstance may be represented by aliteral.
The following are example literals for the built-in value classes i nt eger, real , and stri ng
(respectively):
7
3.142
‘Hello World’
The following are example associative literals for the user-defined value classes t enper at ur e,
dat e, and poi nt (respectively):
tenmperature with celsius: 0
date with ( month: 1, day: 10, year: 1995 )
point with ( x: 100, y: 0 )
b) Theidentity of an instance may be represented by avariable, denoting an individual instance that is
unknown at the time of writing. A variable name shall begin with an upper-case | etter, such as:
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T1
Self
¢) Along with the identity of the value class instance, the value class name may be stated. In thisform,

d)

the class name shall precede the identity label literal or variable and shall be followed by a colon,
such as:

tenperature: T1
An unnamed, unknown instance shall be indicated by omitting the identity portion and including
only the value class name of the instance, such as:

t emperature

5.3.2.4 Sample instance property

a)

b)

d)

Any relevant property of the instance, either direct or inherited, may be shown for an example
instance.

The sample instance property shall have two parts:

1) A sampleinstance property label, and

2) A sampleinstance property value.

While the sample instance property label is typically the property name, the sample instance prop-
erty label may be any RCL expression over properties of that class.

The sample instance property value shall be the value to which the expression evaluates for the
instance. If the expression valuepair isE: V,thensSelf has E: Vshal hold, whereself isthe
identity of the instance.

5.3.2.5 Sample instance diagram

In a sample instance diagram, instances are shown as separate shapes.

a)

b)

0)

d)

e

46

In asample instance diagram, an instance shall be represented by an open-stacked rounded rectangle
with a double baseline.

In asample instance diagram, the instance’s identity label shall be placed either
1) Insidethe rectangle (when no responsibilities, property names, or property name value pairs are
shown), as shown in Figure 17, or

For example:

T1
Identity Label
~
N

Figure 17—Value class sample instance diagram (1)

2) Above the rectangle (when sample instance properties are shown inside the rectangle), as
shown in Figure 18.
In the form of sample instance diagram shown in Figure 18, a sample instance property shall be writ-
ten as:
property nane: property val ue
An alternative form of syntax shall be available for a value class instance diagram. This form shall
use the name of the value class along with itsidentity, asillustrated in Figures 19 and 20.

The values of class-level properties shall be shown in an unstacked box that is labeled by only the
class name, as shown in Figure 21.
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For example:

T2
dentity Label fahrenheit: 86
property name: property value celsius: 30
property name: property value kelvin: 303.16
property name: property value I'l rep: 303.16
< = S =

Figure 18—Value class sample instance diagram (2)

For example:

value class name: temperature: T1

Identity Label

N Z
S = |- =~

Figure 19—Alternative syntax for a value class instance diagram (1)

For example:

temperature: T2

value class name: Identity Label
fahrenheit: 86
property name: property value celsius: 30
property name: property value kelvin: 303.16
property name: property value I'l' rep: 303.16
= = N Z
NS e

Figure 20—Alternative syntax for a value class instance diagram (2)

real
pi: 3.142
e: 2.718

Figure 21—Value class class-level property instance diagram

5.3.2.6 Sample instance table

A second form of showing sample value class instances is as a sample instance table. This tabular presenta-
tion of instances is useful when several instances of one class are to be presented. The conventions for a sam-
pleinstance table areillustrated in Figure 22, which depicts two instances of temperature and two class-
level propertiesvalues of real.

a) Inasampleinstancetable, the class name shall be placed above the table.
b) Inasampleinstance table, instances shall be shown as rowsin atable representing the class.
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temperature real
fahrenheit celsius kelvin |l rep pi e
Tl 68 20 293.1 293.16 3.142 2.718
T2 86 30 303.1 303.16

Figure 22—Value class sample instance table

¢) Inasampleinstance table, the instance identity label may be shown to the left of the row represent-
ing the instance.

d) In asample instance table, each property shall be represented by a column where the column is
named by the sample instance property label. Each cell shall display the sample instance property
val ue associated with the row (instance).

€) When theinstance table displays class instances as its rows, a double line shall separate the property
name column headings from the first instance row.

f)  When theinstance table displays class-level properties, asingleline shall separate the property name
column headings from the class-level property row, and the values of class-level properties shall be
shown in this single row without an identity label.

5.3.3 Value class rules
5.3.3.1 Instance value constraint

a  Any number of instance value constraints may be specified for avalue class.
5.3.3.2 Uniqueness constraint

a) Atleast one uniqueness constraint shall be specified for avalue class.
b)  The property name(s) stated in an associative literal shall be the sole constituent(s) of a uniqueness
constraint.

5.4 Generalization

People mentally abstract a generalization between two classes when they realize that every instance of one
classisan instance of another class. Everyone does this generalizing; it is part of common sense. In this way
the generalization of citizen over registered-voter is abstracted from the realization that every registered
voter isacitizen.

Classes are used to represent the notion of “things whose knowledge or behaviors are relevant.” Since some
real world things are generalizations of other real world things, some classes must, in some sense, be gener-
alizations of other classes. A class that specifies additional, different responsibilities to those of a more gen-
era classis known as a subclass of that more general class (its superclass). Each instance of the subclass
represents the same real-world thing as its instance in the superclass.

For example, suppose employees are something with knowledge and behavior. Although there is someinfor-
mation needed about all employees, for salaried employees additional responsibilities might be needed that
differ from the additional responsibilities needed for hourly employees. In this example, the classes sala-
riedEmployee and hourlyEmployee are considered subclasses of the class employee. In another
case, a subclass may be needed to express arelationship that is valid for only a specific subclass or to docu-
ment the relationship differences among the various subclasses. For example, afullTimeEmployee may
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qualify for abenefit, whileapartTimeEmployee may not. In athird case, a subclass may be needed
to reflect different behavior. For example, apartTimeEmployee may change days or hours of employ-
ment whilea fullTimeEmployee may not.

5.4.1 Generalization semantics
5.4.1.1 Instance

Saying that a subclass S generalizes to a superclass C means that every instance of class S is also smulta-
neously an instance of class C. For example, every instance of fullTimeEmployee isalso aninstance of
employee, and every instance of partTimeEmployee isan instance of employee. Note that thereis
only one instance; this concept is fundamentaly different from a relationship, which associates distinct
instances.

5.4.1.2 Generalization structure

A generalization structure is a connection between a superclass and one of its more specific, immediate sub-
classes. A generic ancestor of aclassis a superclass that is either an immediate superclass of the class or a
generic ancestor of one of the superclasses of the class.

A generalization structureis not explicitly named. It isimportant to remember that a generalization structure
is not arelationship. It cannot be said that a subclass instance “is related to” itsintrinsic superclass since an
instance of the subclass and its superclass are one and the same instance. However, in reading the generaliza-
tion structure, implicit verb phrases may be used:

— *“isalan” (from the subclassto the superclass), and
“can bea/an” or “ must be a/an” (from the superclass to the subclass).

For example, reading the generalization structure in Figure 25 from the subclass to the superclass direction,
“ each salariedEmployee is an employee” The generalization structure is read as “ each employee can be a
salariedEmployee” in the reverse direction. If each instance of the superclass must be an instance of one of
its subclasses, the structure should be read as “must be a/an” with an “ or a/an” conjunction. For example,
“ each employee must be a full TimeEmployee or a partTimeEmployee”

5.4.1.3 Generalization taxonomy

The set of generalization structures with a common generic ancestor forms a generalization taxonomy (or
generalization hierarchy). In a generalization taxonomy every instance is fully described by one or more of
the classes in the taxonomy. For every instance, at least one of these classes is its lowclass, the lowest sub-
classin its declaration. Specificaly, if an instance isin aclass s and not in any subclass of S, then s isthe
Iowclassfzgr the instance. Lowclass isimportant in understanding property inheritance and request response
handling.

5.4.1.4 Substitutability

Since each instance of a subclass is an instance of the superclass, an instance of the subclass should be
acceptable in any context where an instance of the superclassis acceptable. Thisisthe principle of substitut-
ability [B19]. When substitutability holds throughout a model, reasoning about the model is simplified since
it can be done on the basis of what a property value means for the superclassin which it is specified. If sub-
stitutability did not hold, then reasoning about a model would require examination of every overriding prop-
erty. For instance, referring to the example in Figure 23, an instance of assembledPart can be reasoned

25500 5.4.16 for an explanation of the circumstances where there can be multiple lowclasses for an instance. See 5.4.1.11 for a discus-
sion of the possible impacts on lowclass when specializations change.

Copyright © 1999 IEEE. All rights reserved. 49



IEEE
Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

about simply asapart. This more generalized notion of part has aproperty cost that does not lose any
meaning in its more speciaized form asassembledPart’scost.

5.4.1.5 Inheritance

Generalization implies inheritance of responsibiliti es.?/ Thisisan old ideawith new terminol ogy. For exam-
ple,

“ Every mammal has a date of birth.
Every human is a mammal.
Therefore every human has a date of birth”

is one of the syllogisms of Aristotle's logic. The class human inherits the date of birth property from the
superclassmammal.

Because every instance of a subclass is also an instance of its superclass, each instance of the subclass has
the responsibilities (properties and constraints) of its superclass as well as its own. The subclass is said to
inherit the responsibilities of its superclass. The subclass may also declare responsibilities that are specific to
that subclass. Finaly, the subclass may specify properties that have different realizations from the realiza-
tions specified in its superclass. Figure 23 illustrates these three aspects of inheritance.

part
name
cost
T 1
vendor purchasedPart assembledPart

cost cost
assemblyDate

Figure 23—Inheritance

In the view in Figure 23, a part is categorized according to whether it is an assembled or a purchased part.
Every part has aname, so this property is stated at the level of the superclass, part. The specification of each
subclass (purchasedPart and assembledPart) inherits this property from its superclass. Every
instanceof purchasedPart andassembledPart will haveanamevauebecausseachisitsaf apart.

Furthermore, a subclass may declare additional responsibilities that are specific to the subclass. An assem-
bledPart hasadateon which it was assembled, and apurchasedPart isassociated with the vendor
that suppliesit.

Finally, while generalization implies the inheritance of the specification and meaning of a property (i.e., its
interface), it does not necessarily imply the inheritance of its realization (see Clause 6). When both the sub-
class and its superclass have a property of the same name, the property in the subclass overrides the inherited
property (Figure 24). Overriding isintended to preserve substitutability. Continuing with the examplein Fig-
ure 23, all parts have a cost, but an assembled part has a cost that depends upon the cost of each of its constit-

26 For a further discussion of typing rules for overrides, see 7.4.4.
27 See Clause 7 for afull discussion of inheritance.
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uents plus the cost of assembly. While a purchased part knows its cost directly, an assembled part must
calculate its cost when requested. The superclass part has aproperty called cost that isinherited by both
purchasedPart and assembledPart. Theredization of cost (i.e., the method that implements the
operation) differsin each of the subclasses, but its meaning (interface) does not. Generalization and its con-
sequent inheritance are a semantic notion, not an aspect of the realization.

part

cost

/

same meaning
(interface)

T |
urchasedPart assembledPart

cost cost

differing realizations

Figure 24—Inheritance overriding

5.4.1.6 Subclass cluster

A subclass cluster (simply, cluster) is a set of one or more generalization structures in which the subclasses
share the same superclass and in which an instance of the superclassis an instance of no more than one sub-
class. A cluster exists when an instance of the superclass can be an instance of only one of the subclassesin
the set, and each instance of a subclass is an instance of the superclass. Since an instance of the superclass
cannot be an instance of more than one of the subclasses in the cluster, the subclasses in a cluster are mutu-
ally exclusive. However, a class can be the superclass in more than one cluster, and the subclasses in one
cluster are not mutually exclusive with those in other clusters.

Expanding on the earlier example of employee, salariedEmployee, hourlyEmployee, full-
TimeEmployee, and partTimeEmployee are al subclasses of the superclass employee. These are
four generalization structures: one between employee and salariedEmployee, asecond one between
employee and hourlyEmployee, a third between employee and fullTimeEmployee, and a
fourth between employee and partTimeEmployee.

In this example, an employee cannot be both salaried and hourly. Likewise, an employee cannot be both full-
time and part-time. However, an employee could be hourly and full-time, or hourly and part-time, etc. Thus,
there are two clusters specified for employee—oneincluding salariedEmployee and hourlyEm-
ployee, and one including fullTimeEmployee and partTimeEmployee. An instance of
employee can be simultaneously an instance of either salariedEmployee or hourlyEmployee
and an instance of either fullTimeEmployee Of partTimeEmployee (see Figure 25).

5.4.1.7 Total cluster/partial cluster

If each instance of a superclass must be an instance of at least one of the subclasses of a cluster, the cluster is
said to be atotal cluster (complete cluster). In atotal cluster, each superclass instance is always an instance
of one of its subclasses. For example, in Figure 25 each employee is either full-time or part-time, so that
cluster istotal.
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employee

— 4 | |

fullTime partTime salaried hourly
employee employee employee employee

Figure 25—Multiple subclass clusters

In a partial cluster (incomplete cluster), an instance of the superclass may exist without also being an
instance of any of the subclasses. For example, if some employees are unpaid and, therefore, have none of
the additional properties of salaried or hourly employees, that cluster is partial.

5.4.1.8 Abstract class

A class for which every instance must also be an instance of a subclass in the cluster (i.e., atotal cluster) is
called abstract with respect to that cluster. A class is an abstract class if it is abstract with respect to any
cluster.

An abstract class cannot be instantiated independently, i.e., instantiation must be accomplished via a subclass.
In Figure 25, employee is abstract with respect to the two subclasses, ful1TimeEmployee and part-
TimeEmployee; every employee iseéither a fullTimeEmployee Of apartTimeEmployee. How-
ever, because the salaried/hourly cluster is partial, employee isnot abstract with respect to that cluster.

5.4.1.9 Parallel classes

Two subclasses are parallel classes if they are distinct, are not mutually exclusive, and have a common
generic ancestor and for which neither is a generic ancestor of the other. Figure 26 illustrates these ideas:

a) Therearetwo clustersunder c1: ¢c2 and c3.

b) c1 isabstract with respect to the cluster c2, but not with respect to c3.
¢) Thegeneric ancestorsof c4 arec2, c3,and c1.

d) Thepardld classpairsare(c2, c3)and(c2, cb5).

5.4.1.10 Inheritance disambiguation

While the kind of construct shown in Figure 26 rarely occurs, it is used here to illustrate the disambiguation
of inheritance conflicts. If any class has multiple superclasses, inheritance conflicts could occur. Inheritance
conflicts arise when a class inherits a responsibility of a given name from two distinct generic ancestors.
Such conflicts shall be avoided by imposing the rule under “Uniqueness’ in Clause 7.5.3.

5.4.1.11 Changing state class specialization

Every instance is an instance of one or more classes. The instance’s lowclassin acluster, if any, isthe lowest

class in that cluster of which it is an instance. In a generalization taxonomy, it is possible for a state class
instance to change the nature of its specialization.?® Specifically, an instance whose lowclassin acluster isat

52 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

cl
pl

o
o-

2 c3
p2
c4 | cb

Figure 26—Parallel classes and inheritance disambiguation

one level in the taxonomy could become (or be discovered to be) a more speciaized form of that class. In
this case, the instance would specialize, i.e., become an instance of one (or more) of the subclasses specified
for the class of its current lowclass and thereby have a different (lower) lowclass. For example (referring to
Figure 27), an instance A2 with acurrent lowclass of b1 could specialize as c; its new lowclass would be c.
Thisis not restricted to only one level; an instance AB with a current lowclass of a could specidize as c.

Alternatively, a state class instance could become (or be discovered to be) aless specialized form of its class.
In this case, the instance would unspecialize, i.e., cease being an instance of one (or more) of the subclasses
specified for the class of its current lowclass and thereby have a different (higher) lowclass. For example, an
instance AC with a current lowclass of ¢ could unspecialize asb1; its new lowclasswould be b1. Thisisnot
restricted to only one level; an instance AD with a current lowclass of ¢ could unspecialize as a.

It is also possible for a state class instance to change “laterally” within a cluster. In this case, the instance
would respecialize, i.e., become an instance of one of the other subclassesinits current cluster. For example,
an instance AE that is currently in subclass b1 could respecialize as b2. The lowclass of AE could have
been either b1 or c; in either case its new lowclass would now be b2. Conversdly, if instance AF might
respecialize fromb2 tob1; its new lowclasswould be b1. It could further specialize as c.

5.4.1.12 Discriminator

A discriminator, which is a property of the superclass, may optionally be specified for a cluster. Since the
value of the discriminator (when a discriminator has been declared) is equivalent to the identity of the sub-
class to which the instance belongs, there is no requirement for a discriminator.

If adiscriminator is identified, the value of the discriminator determines the subclass of an instance of the
superclass. For example, in Figure 25 shown earlier, the discriminator for the cluster including the full- and

part-time subclasses might be an attribute named employeeTimeType (see Figure 30).

In atotal cluster using a discriminator, there will always be a value of the discriminator. In a partial cluster,
an instance's discriminator has no value if the classis the instance’s lowclass within the cluster.

5.4.1.13 Value class hierarchy

While value classes may exist in a generalization hierarchy, it should be emphasized that representation is
not the same as generalization. For example in Figure 16, the temperature vaue class has a representa

28The built-ins supporting these operations are described in Annex D.
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bl b2

fol

Figure 27—Changing specialization

tion of real, but it isnot specified asa subclass of real. A given representation value may occur in many
value subclass instances, but that does not make the instances identical .

5.4.2 Generalization syntax
5.4.2.1 Subclass cluster
a) Thesubclass cluster symbol shall be an underlined circle.
b) A cluster shall be shown as a line extending from the superclass to the subclass cluster symbol

accompanied by separate lines extending from the bottom-most subclass cluster underline to each
subclassin the cluster, as shown in Figure 28.

——~ ___ Superclass

Subclass Cluster symbol — —~——# discriminator name

I - |

Subclasses of a single Subclass Cluster

Figure 28—Subclass cluster syntax
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5.4.2.2 Abstract class

a) A double-underlined circle, as shown in Figure 29, shall designate that the superclassis an abstract
class with respect to the cluster, i.e., the cluster isatotal cluster. Note that this shall not mean that all
of the subclasses are depicted in the diagram.

b) A single-underlined circle shall denote a partial cluster, i.e., the superclass is not abstract with
respect to the cluster.

Abstract Class —
with respect
to this
cluster T ( 2
~%—_x__ Abstract Class Symbol

I = I

Figure 29—Abstract class syntax

5.4.2.3 Generalization structure

a) In a diagram, each line pair (from the superclass to the subclass cluster symbol, and from the

bottom-most underline of the subclass cluster symbol to the subclass) shall represent one of the gen-
eralization structuresin a cluster.

5.4.2.4 Discriminator

a) If adiscriminator property has been specified, that property’s name shall be written with the subclass
cluster symbol, as shown in Figure 30.

employee

g 2 employeeTimeType

fullTime partTime
Employee Employee

Figure 30—State class discriminator
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5.4.3 Generalization rules

5.4.3.1 Generalization structure

a)

b)
<)

d)

A class may have more than one generalization structure in which it is the subclass, i.e., a class may
have more than one superclass.

A subclass in one generalization structure may be a superclass in another generalization structure.
The subclass and superclass in a generalization structure shall both be state classes or both be value
classes.

A state class subclass shall inherit the nature of its superclass, i.e.,

1) If asuperclassis adependent state class, its subclasses shall be dependent.

2) If asuperclassisan independent state class, its subclasses shall be independent.

5.4.3.2 Generalization taxonomy

a)
b)

All the superclasses of a class shall have a common generic ancestor.
No class may be its own generic ancestor, i.e., no class may have itself as a superclass nor may it
participate in any series of generalization structures that specifies acycle.

5.4.3.3 Inheritance overriding

f)

A subclass shall inherit the responsibilities of its superclasses.
A subclass may have additional responsibilities beyond those of its superclasses.
A subclass may override one or more of the responsibilities of its superclasses.
A property P’ of aclassC’ that overrides a property P of a superclass C may do so in one of two
ways:
1) Asasubstitutionfor p, or
2) Asasgspecidization of p.
Whether P’ isasubstitute or specialization isamatter of intent. It shall be up to the modeler to
choose whichever best models the “real world” under study. (Seealso 7.4.4.)
If P subgtitutes for P, then P’ shall be used for all messagesto instancesof C”.
If P’ specializes P, then P’ shall be used for some messages to instances of ¢’ and P shall be used
for other messages to instances of C’, depending on the (dynamic types of the) argument valuesin
the message.

5.4.3.4 Subclass cluster

a)
b)
<)
d)

e

The subclassesin a cluster shall be mutually exclusive.

Subclasses in distinct clusters of a superclass need not be mutually exclusive.
A class may have any number of subclass clustersin which it is the superclass.
A subclass cluster shall be classified as either

1) “total” (“complete’ or “abstract”), or

2) “partid” (“incomplete”’ or “concrete”).

A view may present all, or only some, of the subclasses of a class.

5.4.3.5 Discriminator

56

a)
b)

0)

A discriminator shall be a property of the superclass.

If a discriminator is declared for a total cluster, the discriminator shall have a value for every
instance.

The value of the discriminator property shall be either

1) Theintrinsic identifier of the superclass, or

2) One-to-one mappable to that identifier.
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d) If acluster hasadiscriminator declared, the discriminator shall be distinct from all other discrimina-
torsfor the superclass, i.e., no two clusters of a superclass may have the same discriminator.

5.4.3.6 Value class hierarchy

a) A subclass value class shall not be restricted to having the same representation as its superclass
(since representation is by encapsulated attributes).

b) Thei ggstances of a subclass value class may be a subset of the instances of the superclass value
class.

¢) A value class subclass may have additional or different propertiesin its representation.
For example, there are two classic representations for point: Cartesian and polar. For certain oper-
ations on points, there are “better” (faster/more efficient) implementations, e.g., addition is better
using Cartesian and multiplication is better using polar. This means that the representation in the
subclass could be different from that in the superclass. Alternatively, the superclass could be
declared abstract, with the representation stated only in the subclasses.

d) Pardlel value classes shall be abstract.

e) Every pair of parallel value classes shall have acommon subclass.

Theresult of these rulesisthat avalue class instance shall always have exactly one lowclass, but a state class
instance may have multiple lowclasses.

5.5 Relationship

People mentally abstract relationships between classesin the sense that individual instances of the classes are
related in asimilar way. Everyone does this relating; it is part of common sense. A relationship expresses a
connection between two (not necessarily distinct) classes that is deemed relevant to a particular scope and
purpose. It is named for the sense in which the instances are related. For example, a*“ votes at” relationship
between the registeredvoter class and the pollingPlace class is abstracted from the
understanding that individual instances of registered voters vote at a polling place.

5.5.1 Relationship semantics
5.5.1.1 Relationship/relationship instance

An IDEF1X diagram depicts the type of relationship between two state classes. A relationship isthe result of
mental classification, but a relationship itself is not treated as a state class or value class. An instance of the
relationship associates specific instances of the related classes. It is atime-varying binary relation between
theinstances (in the current extents) of two state classes. For example, “ customer Mary owns account number
123" could be an instance of the relationship shown in Figure 34.

5.5.1.2 Identity

A relationship instance does not have its own intrinsic identity; rather, itsidentity comes from the identity of
the participating state classes. The relation can be visualized in the usual tabular way (two columns each
reflecting an oid) as illustrated in Figure 31, which shows the instances of the vendor/boughtPart
relationship of TcCo (see C.7). Each row is an ordered pair of oids for the related objects. An instance
(occurrence) of a relationship is uniquely determined by the identity of the participants. A relationship
instance does not have an identity independent of its property values; itsidentity is equivalent to its property
values.

23l assi ng by subsetting preserves substitutability and allows static type checking only for value classes. See also “ Fundamental s of
Object-Oriented Databases’ [B21].
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standardVendor boughtPart

vendor boughtPart
#201 #4
#101 #5
#301 #6
#301 #7

Figure 31—Relationship instances

Relationship instances can aso be presented in a sample state class instance diagram. The same TcCo
relationships that are shown in Figure 31 can be depicted in a diagram of the instances participating in this
relationship (and omitting, for now, the display of the other properties of the classes), asin Figure 32.

vendor: #201

boughtPart: #4
boughtPart(s): [ #4 ] standardVendor: #201

boughtPart: #5
vendor: #101 standardVendor: #101
boughtPart(s): [ #5 ] T

boughtPart: #6
standardVendor: #301

vendor: #301 I

boughtPart(s): [ #6, #7 ] boughtPart: #7
standardVendor: #301

Figure 32—Alternative presentation of relationship instances

This presentation is meant smply to be a way to visualize the instances of a relationship type. One way to
implement the relationship isto form atable (asin Figure 31); another way isfor each participant to maintain
the identity value (or a“list” of such values) of the other participants as reflected in Figure 32. This standard
does not specify any particular way to achieve the implementation of relationships.

5.5.1.3 One-to-many relationship

A one-to-many relationship (sometimes referred to as a parent-child relationship) is a relationship between
two state classesin which each instance of one class (referred to asthe child class) is specifically constrained
to relate to no more than one instance of a second class (referred to as the parent class). Each instance of the
parent class may be associated with zero, one, or more instances of the child class. For example, a one-to-
many relationship would exist between the classes account and transaction if each transaction is
incurred by a single account and an account incurs zero, one, or more transactions.
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The term “one-to-many” includes the special case of a one-to-one relationship in which each instance of the
parent class is also specifically constrained to relate to no more than one instance of the child class. In this
case, the terms “parent” and “child” lose their intuitive meaning.

5.5.1.4 Many-to-many relationship

A many-to-many relationship is a relationship between two state classes in which each instance of one class
may be associated with any number of instances of a second class (possibly none), and each instance of the
second class may be related to any number of instances of the first class (possibly none). Such arelationship
would exist between the classes account and customer if each customer may own any number of
accounts (zero, one, or more) and each account may be owned by any number of customers. In the initial
development of any model, it is often helpful to identify many-to-many relationships between classes. Many-
to-many relationships are often used in survey-level models (see 8.2) to represent general associations
between state classes.

Many-to-many relationships may be replaced in later phases of model development.30 For example, the
many-to-many relationship between customer and account discussed above might be replaced by a pair of
one-to-many relationships by introducing a third state class, such as accountOwnership, which is a
common child class in parent-child relationships with the customer and account classes. These new
relationships specify that an account has zero, one, or more account ownerships (constrained, in this example
to one or more) and that each customer has zero, one, or many account ownerships. Each account ownership
is for exactly one customer and exactly one account. A class introduced to resolve a many-to-many
relationship is sometimes called an associative class. A many-to-many relationship is replaced with an
associative class when the association is itself an object of interest, i.e., it has responsibilities of its own
(perhaps including relationships to other classes).

5.5.1.5 Cardinality

A relationship specification includes a statement of the cardinality of the relationship. Cardinality specifies
how many instances of the second class may or must exist for each instance of the first class, and how many
instances of the first class may or must exist for each instance of the second class. For each direction of a
relationship, the cardinality can be constrained to be at most one, at least one, or both.

The following cardinalities may be expressed from the perspective of each participating class:

a) Eachinstance of one class shall have exactly one associated instance of the other class.
b) Each instance of one class shall have no more than one (i.e., zero or one) associated instance of the

other class.

c¢) Eachinstance of one class shall have at least one (i.e., one or more) associated instance of the other
class.

d) Each instance of one class shall be associated with some exact number of instances of the other
class.

€) A more specific cardinality shall be expressed using either a constraint or a note.

If no cardinality is specifically declared for the perspective of a participating class, the following cardinality
applies by default: Each instance of one class shall have zero or more associated instances of the other class.

These cardinality variations can be summarized by stating that a relationship can be specified as

— Sngle-valued (i.e., at most one) or multi-valued (i.e., possibly more than one), and
— Total (i.e., at least one) or partial (i.e., possibly none)

30 |n models that are not identity-based, all relationships must eventually be expressed as one-to-many relationships (see 9.10).

Copyright © 1999 IEEE. All rights reserved. 59



IEEE
Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

in any combination, in both directions. With no constraints stated explicitly, arelationship is simply a many-
to-many relationship (multi-valued) that is partia in each direction. The graphics for expressing
relationships and cardinality are provided in Table 2.

Table 2—Relationship cardinality syntax

Cardinality Single-valued Multi-valued
Cardinality Graphic expression | participant type | participant type

The absence of adot shall indicate“ exactly exactly one scalar NA
one”
A hollow dot shall indicate zero or one. at most one scalar NA

@)
A 7 beside a solid dot shall indicate a col- 7 at most one® | collection-val- scalar
lection constrained to no more than one ued with (s)
(and possibly none). [ ) suffix
A P (for “positive”) beside asolid dot shall p | oneormore | collection-val- scalar
indicate one or more, i.e., at least one, pos- ued with (s)
sibly more. () suffix
A solid dot shall indicate thereis no cardi- zero or more | collection-val- scalar
nality constraint, i.e., zero, one, or more. ued with (s)

[ ) suffix
A positive nonzero integer beside the dot n | exactly n collection-val- scalar
shall indicate a cardinality of an exact ued with (s)
number. [ ) suffix

&This alternate form for “at most one” cardinality is provided for modelers who wish to represent consistently all re-
| ationships as collection-val ued, constrained appropriately. For thisaudience, it is possibleto represent a collection-
valued cardinality of “exactly one” using the last option in Table 2 using avalue of 1.

5.5.1.6 Deletion

When a state class instance is deleted (using the built-in deletion property®L), the deletion propagates along
relationships to the extent needed to comply with the cardinality constraints. For example, in Figure 34, the
deletion of an account deletes all related transactions, and the deletion of a customer deletes any account
owned only by that customer, whichin turn deletes all related transactions. On the other hand, the deletion of
atransaction does not propagate.

The default deletion property is built around cardinality constraints. It offers the following advantages:32

a)  Elimination of race conditions3 (and all associated complexity)
b) Direct use of the cardinality constraints
c) Provision for exception handling via overrides

31

See 10.2.
32However, it has the disadvantage that, if all that is needed is a simple restrict, it is necessary to override the default (built-in) deletion
property with a user-written deletion property.
33A race condition exists when the outcome depends on the order of execution and the order of execution is not specified, thus making
the outcome unspecified.
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5.5.1.7 Verb phrase

A relationship may be labeled with averb phrase such that a sentence can be formed by combining the name
of thefirst class, the verb phrase, the cardinality expression, and the name of the second class. A verb phrase
isidealy stated in active voice. For example, the statement “each project funds one or more tasks’ could be
derived from a relationship showing project asthefirst class, task as the second class with a “one or
more” cardinality, and “funds’ asthe verb phrase.

A relationship may be labeled with up to two verb phrases, one for each “direction” of the relationship. A
second verb phrase is sometimes a simple restatement of the first verb phrase in passive voice, eg.,
“Customer owns account.” restated as “Account is owned by customer.” In fact, from the previous example,
it could be inferred that “each task is funded by exactly one project.” without the direct statement of a verb
phrase. The second direction is simply represented as*isfunded by” as the passive voice form of the “funds’
verb phrase. A relationship shall till hold truein both directions even if no verb phraseisexplicitly assigned.

5.5.1.8 Role name

Two additional |abels can be designated for each relationship. These labels are the relationship’s role names
(seealso 6.5). A relationship role nameis aname given to aclassin arelationship to clarify the participation
of that classin therelationship, i.e., connote therole played by arelated instance. This naming scheme results
in up to four labels for each relationship, arole name and a verb phrase in each direction.

An example that includes two one-to-many relationships with all four role namesis shown in Figure 33. This
example has the following full reading, with the role names highlighted in bold and the verb phrases
underlined:

a) Eachorigin isthe start of many (zero or more) outboundFlight (s).

b) Each outboundFlight takes passengersfrom exactly one origin.

¢) Eachdestination istheend of many (zero or more) inboundFlight (s).
d) Each inboundFlight brings passengersto exactly onedestination.

If aclassin arelationship hasarole name r, the name of the corresponding participant property in the related
classiseither r or r (s) depending on the cardinality of the relationship (see 6.5).

city flight
is the start of (outboundFlight)
(origin) takes passengers from
is the end of (inboundFlight)
(destination) brings passengers to

Figure 33—Relationship with verb phrases and role names

5.5.1.9 Intrinsic relationship

A relationshipisanintrinsic relationship if it istotal (i.e., not partial), single-valued (i.e., not multi-valued),
and constant (i.e., unchanging once established) from the perspective of (at least) one of the participating
classes, referred to as a dependent class (see 5.2). Such arelationship is considered to be an integral part of
the essence of the dependent class. For example, in Figure 34 atransaction hasanintrinsic relationship
toitsrelated account becauseit makesno sensefor aninstanceof at ransaction to switch to adifferent
account. That would change the very nature of the t ransaction.
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A dependent state class may also participate in one or more nonintrinsic relationships. A nonintrinsic
relationship is a relationship that, from the dependent class perspective, is partial, is multi-valued, or may
change. For example, atransaction can also berelated to an initiating Location; thisrelationship is
shown as nonintrinsic in Figure 34.

5.5.2 Relationship syntax

5.5.2.1 Graphic

a) A relationship shall be depicted as an arc (line) connecting the associated state class rectangles.

5.5.2.2 Cardinality

a) Asillustrated in Table 2, a “dot” (possibly annotated) at one end of the relationship line, or the
absence of adot, shall depict the cardinality from the perspective of the class at the other end of the
relationship. The entries under “single-valued participant type” and “multi-valued participant type”
are explained further in 6.5. Other cardinalities may be expressed using a constraint or a note refer-
ence annotated beside the dot, e.g., “from 2-12,” “morethan 3,” “exactly 7 or 9,” etc.

5.5.2.3 Nonintrinsic relationship

a) A dashed line shall be used for the relationship arc of any nonintrinsic relationship of a dependent
class.

b) A solidline shall be used for all kinds of relationship arc other than the nonintrinsic relationship of a
dependent class.

In Figure 34, the dependent state class, t ransaction, hasan intrinsic relationship with account;
thisrelationship arcisdrawn asa solid line. “transaction” isaso related to an initiating loca-
tion. Sincethisrelationship isnot intrinsic, the relationship arc is drawn as a dashed line.

customer ( ;(husband)

(wife)

location

(owner) |

is | o
owned| owns initiates
by |

account

transaction

incurs

Figure 34—Relationships
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5.5.2.4 Label

a) When averb phrase is provided, it shall be written beside the relationship line on whichever side
allows the diagram to be read in a clockwise direction. For example, in Figure 34, the relationship
from customer to account reads: “Each customer owns accounts.”

b) When arole name is specified, it shall be written in parentheses next to the class whose instance it
names, i.e., at the opposite end of the relationship from the class in which the participant property
occurs (see aso 6.5). For example, in Figure 34, the relationship between account and cus-
tomer isread as“Each account is owned by owners.” Figures 33 and 34 illustrate the proper place-
ment of verb phrases and role names.

5.5.3 Relationship rules

5.5.3.1 Composition
a) A relationship shall aways be between exactly two state classes.
b) Thetwo related classes need not be distinct, i.e., arelationship may be recursive (see Figure 34).
c) A state class may participate in any number of relationships.

5.5.3.2 Verb phrase

a) Verb phrases shall be optional (although they should be used for clarity).
b) When averb phraseis omitted, “has’ shall be used to read the relationship.

5.5.3.3 Role name

a) A role name shall be specified when needed to disambiguate two or more relationships to the same
state class.

b)  When there is more than one relationship between the same pair of classes, the associated role
names shall be distinct.

¢) A role name shall conform to the rules of state class naming.

d) If arole name is omitted, the related class name shall be used as the role name when reading the
relationship.

5.5.3.4 Naming
a) The name of arelationship shall be composed of the names of the related classes, along with their
respective relationship role names, if any. For example, in Figure 33 the two relationships between
city and flight are named city (origin), flight (outboundFlight) and city (des-
tination), flight (inboundFlight), respectively.

5.5.3.5 Intrinsic relationship

a) A dependent state class shall participate in at least oneintrinsic relationship.
b) A dependent state class may participate in any number of nonintrinsic relationships.

5.5.3.6 Cardinality
a) Uponread, al cardinality (including “cardinality N") shall be checked.
5.5.3.7 Deletion

a) When astate classinstanceis deleted with the built-in deletion property, the deletion shall propagate
along relationships to the extent needed to comply with the cardinality constraints other than the
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“exactly N” constraint. There are three variations in support of differing cardinality specifications.
Toillustrate this, let classes c1 and c2 berelated and an instance T of c1 be deleted.

1

2)

3)

In the first case, if the cardinality specification states that each c2 shall have exactly one c1
(see Figure 35), then when an instance T of c1 isdeleted, every c2 related to I shall also be
deleted. In other words, given this cardinality specification, if aninstance of c2 isrelatedto c1
and c1 is deleted, it would violate the cardinality constraint to leave c2 by itself so c2 shall
also be deleted.

cl

c2

Figure 35—Deletion case 1

In the second casg, if the cardinality specification states that each c2 shall have at least one c1
(see Figure 36), then when an instance I of c1 is deleted, every c2 related to only T shall
also be deleted. In other words, given this cardinality specification, if an instance of c1 is
deleted and it isthe last c1 related to c2 , then the deletion shall propagate to c2.

cl cl

P P
or
c2 c2

Figure 36—Deletion case 2

In all other cases, there shall be no propagation. Figure 37 illustrates only one of the many vari-
ations of cardinality specification for this case. When aninstance I of c1 isdeleted, there shall
be no propagation to c2. Likewise, when an instance J of c2 is deleted, there shall be no
propagationto c1 .

cl

. 4

Figure 37—Deletion case 3
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b) Thedefault deletion property may be overridden
1) To prevent deletion,
2) Tocarry out additional or alternative action.

6. Responsibility

An instance possesses knowledge, exhibits behavior, and obeys rules. These notions are collectively referred
to as theinstance’s responsibilities.

6.1 Introduction

A class abstracts the responsibilities common to its instances. During initial model development, and in sur-
vey-level and integration-level models in particular (see 8.2), a responsibility may simply be stated in gen-
eral terms and not distinguished explicitly as an attribute, participant property, operation, or constraint. Also,
aggregate responsibilities may be identified, rather than individual properties. Broadly stated responsibilities
are eventualy refined as specific properties and constraints.

In addition to these instance-level responsibilities, a class may also have class-level responsibilities in the
form of attributes, operations, and constraints. These responsibilities constitute the knowledge, behavior, and
rules of the class as awhole. For example, name and 1astDateVoting would be instance-level proper-
tiesof theclass registeredvoter. Thetotal registeredvoterCount would be aclass-level prop-
erty of the class registeredvoter. While each registered voter would have a value of name and
lastDateVoting, there would be only one value of registeredvVoterCount for the class as a
whole.

6.1.1 Separation of interface from realization
According to the concept of abstraction, each responsibility (property or constraint) can be

a) Realized by stored data or by computation.

b)  Understood without knowing how it is realized.

¢) Requested in the same way, regardless of whether it is an attribute, participant property, operation, or
constraint—and independent of how the responsibility is realized.

The specification of a responsibility has two parts: an interface and a realization,3* each of which in turn
may have two parts, as shown in Figure 38.

Responsibility:
Property or

Constramt \
/ Interfacx Reallzatlon \

Meaning Signature Representatlon Method

Figure 38—The elements of a responsibility

34The term “implementation,” which may be more familiar to an object-oriented audience, has consciously not been used in order to
avoid confusion since implementation tends to connote a particular language implementation. “Realization” in this document refers to
the requests made to fulfill aresponsibility in the specification language, independent of implementation language.
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A sharp distinction is made between interface and realization. The interface encompasses the declaration of
meanings and the signatures for properties and constraints. Realization encompasses the representation of
these interface responsibilities through specified methods and any needed representation properties.

A classis encapsulated to the extent that access to the names, meanings, and values of the responsibilitiesis
entirely separated from access to their realization. Encapsulation always hides the realization of a responsi-
bility from the requester. In a model, this encapsulation takes the form of providing only the external inter-
face of the classes, i.e., the meanings and signatures of the responsibilities. The specification language
enforces encapsulation by not providing any way to access the representation of any responsibility directly.

Encapsulation is an enforcement mechanism for the concept of abstraction and is used to prevent one from
seeing behind the abstraction. Encapsulation is most important as an implementation-time enforcer of
abstraction. During modeling, the main concern is specifying classes and responsibilities according to the
concept of abstraction. If the abstraction is done well, encapsulation will be able to enforce it. If the abstrac-
tion is not done well, some way will be found around the encapsulation out of necessity.

6.1.1.1 Interface

The interface states what an object is responsible to know or do (property) or what constraintsit is responsi-
ble to adhere to (constraint). The interface specification consists of the meaning (semantics) and the signa-
ture (syntax) of a property or constraint.

The meaning of a responsibility is just that, what it means. The statement of responsibility is written from
the point of view of the requester, not the implementer. It states what the requester needs to know to make
intelligent use of the property or constraint. That statement should be complete enough to let a requester
decide whether to make the request, but it should stop short of explaining how a behavior or value is accom-
plished or derived. Meaning is initially captured using freeform natural language text in a glossary descrip-
tion (see 8.4). It may be more formally refined into a statement of pre- and post-conditions using the
specification language (see also 6.1.1.4 and 7.10.2).

A signature states what the responsibility “looks like” 1t specifies the name of the responsibility, the argu-
ments (if any), and the type of the result. A qualified responsibility nameisthe qualified class name followed
by acolon (“:”) followed by the property name. A type (class) may be specified for each argument in order to
limit the argument values to being instances of that class. Typing the arguments helps one to reason about the
responsibility. However, insisting on typing too soon during model development is counter-productive.
Therefore, both typed and untyped arguments are supported (see 7.4).

6.1.1.2 Request

A reguest encompasses the requests for properties and constraint checks and the sentences of such reguests.
The related concept of encapsulation is generally applied to the interface between a given instance and its
requester clients. If the instance is well-encapsulated, then the client knows nothing about the internal imple-
mentation (realization) of any of the functionality of the instance. A request is smply made to the interface
of the instance (see Figure 39). The requester does not need to know anything about the internals of the
instance.
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Responsibility:
Property or

Constraint:
requests are made to / \
the interface LY
Request »/* Interface \ / Realization

Meaning Signature  Representation Method

methods work by issuing requests to the interface

Figure 39—Request and interface

A responsibility of a class can itself be hidden, i.e., declared as either visible only to the instances of the
class and its subclasses (protected), or visible only to requestsissued by realizations of the responsibilities of
the same class (private). Any interface that is not hidden is visible to any requester, i.e., public. Declaring a
property or constraint hidden restricts the visibility of the interface to only specified requesters.

6.1.1.3 Realization

To meet its responsibilities, an instance may reguest the knowledge or behavior of other instances (see 6.2).
The realization states “how” aresponsibility ismet. A realization specification consists of any necessary rep-
resentation property(s) together with the method (if any). Representation provides the value of the value
classinstance or the state of the state class instance. Representation consists of one or more attributes or par-
ticipant properties. A method is a statement of how property values are combined to yield a result.

A realization may involve representation properties or amethod, or both. For example, an attribute may have
only a representation and no method.®® Figure 40 illustrates the temperature class using areal number
as its hidden representation, known only to the temperature classto be a Kelvin temperature. (See 6.3
for an explanation of the graphic syntax used in these diagrams.)

temperature

fahrenheit: real
celsius: real
kelvin: real
|| rep: real

Figure 40—Hidden representation property

A derived attribute has a method and, typically, representation properties. If hotel’s averageTemp iS
derived, then it has amethod,3® such asillustrated in Figure 41 (the use of the multi-valued participant prop-
erty room isillustrated):

35A realization that was a“ pure method” (i.e., without any representation properties) would use only literals; it would not “get” any val-
ues asitsinputs.

38N ote this allows for hotels with no rooms and allows for rooms that have no temperature value. Ts isthelist of (valued) roomTemps.
In order for the hotel to have an averageTemperature, Ts must not be empty.
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hotel: Self has averageTemp: T ifg.¢

Ts is [ Troom where ( Self has room..roomTemp:
not(TS==[J)r

T is Ts..sum/Ts..count.

Troom ) 1],

The method’s representation properties, i.e., the properties on which the method operates, are room and
roomTemp (See Figure 41).

hotel

averageTemp: temperature (0)
room: room (mv)

room l

roomTemp: temperature (0)

Figure 41—averageTemp (derived) with representation properties

If, on the other hand, averageTemp is cached rather than derived, it makes use of an interna (private),
stored representation property, such as savedTemp, as shown in Figure 42. The realization method makes

use of this representation property in its method (the use of the collection participant property room (s) is
illustrated):

hotel: Self has averageTemp: T if .¢
(i1f not Self has savedTemp: T

then
Ts is [T where (Self has room(s)..member..roomtemp: T)],
not ( Ts == [ 1),
Self..savedTemp:= Ts..sum/Ts..count

endif),

Self has savedTemp: T.

hotel

averageTemp: temperature (0)
room(s): set(room)
| | savedTemp: temperature (0)

room l

roomTemp: temperature (0)

Figure 42—averageTemp (cached) with representation properties

In either case, therealization of hotel'saverageTemp isnot known to the requester. In fact, therealiza-
tion may be changed behind the scenes without impact on its requesters.
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6.1.1.4 Pre-condition/post-condition

The meaning of a property can be further specified with pre-conditions and post-conditions. Each condition
isalogical sentence about the property values of the instance to which the property request was directed and
the values of the property arguments.

The meaning of the property is interpreted as being what the requester of the property can rely on; which is
if the pre-conditions are true before the property request, then the post-conditions will be true after the prop-
erty request.

Such pre- and post-conditions form the basis for contracts between the instance and those who send
requests. In essence the contract is an assurance by the instance to the requester that “if you adhere to these
pre-conditions, then you can depend on me to fulfill your request and ensure that the post-conditions are
met.” Thus, both the pre-conditions and post-conditions are considered to be “on the interface,” i.e., visible
to the requester of the property.

In the case of inheritance hierarchies, the effective pre-condition is a digunction of the pre-conditions of
overridden properties and the pre-condition of the overriding property. The effective post-condition is the
conjunction the post-conditions of overridden properties and the post-condition of the overriding property.
The effective pre-condition, effective post-condition, and the realization each consists of a sentence in the
specification language that, when evaluated, is true or false. The overal logic is as follows:

if effective pre-condition

then
if realization
then
if effective post—-condition
then
request 1is true
else
post-condition failure
endif
else
request 1is false
endif
else

pre-condition failure
endif

A “pre-condition failure” or “post-condition failure” is an exceptional condition. This standard does not
specify what happens when an exceptional condition is encountered; conceptually “everything stops” An
exception condition is simply aflaw in the model. (See also Clause 7.)

6.1.2 Responsibility specification and use
The specification and use of responsibilities involve the following:

a) A responsibility is specified as part of the interface of aclass. The responsibility is named, its mean-
ing is stated in natural language, and various declarations are made about the responsibility to permit
requests for it to be made correctly.

b) A redlization (method) specifies how an instance maps a responsibility’s input arguments to its out-
put arguments. Methods lie behind the interface of a class. Methods are stated with the specification
language (see Clause 7). Methods consist of requests for other interface responsibilities.
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c) A specific request for aresponsibility is arequest for the receiver to map the specific input argument
values to the corresponding output argument values.

d) Solving for a specific responsibility request, i.e., doing the mapping, typically involves sending spe-
cific requests to other instances, as determined by the method, the identity of the receiver, and the
value of the input arguments.

This version of the standard provides graphics and a specification language for the semantics and syntax of
class interfaces, requests, and realizations. This version of the standard does not provide a set of graphics
describing individual requests or patterns of requests.

6.2 Request

To meet its responsibilities, an instance may request the knowledge or behavior of other instances by sending
them messages. A request is a message sent from one object (the sender) to another object (the receiver),
directing the receiver to fulfill one of its responsibilities. Specifically, a request may be for the value of an
attribute, for the value of a participant property, for the application of an operation, or for the truth of a con-
straint. Request al so encompasses sentences of such requests. Logical sentences about the property values and
constraints of objects are used for queries, pre-conditions, post-conditions, and responsibility realizations.

A request is the only way to access a property value, apply an operation, or check a constraint. A request is
made by a sender to areceiver’'s interface; the sender does not need to know anything about the realization.
See Clause 7 for details on specific requests such ascreate, delete, display, and query.

6.2.1 Request semantics

A request is defined to be alogical proposition.3” The declarative nature of alogical proposition gives the
request adual nature. First, asarequest, it isasking some designated instance I for the value v of a specified
property P. Secondly, asaproposition, it is asserting that some designated instance T has a specified property
P with avaluev.

The instance that receives a request for a property value will either use a previously saved value or derive a
value using its method. That method itself consists of requests for the property values (or actions or con-
straint checks) of the other instances with which the instance receiving the original request decidesto collab-
orate. Thus, arequest encompasses both the individual requests for properties and constraint checks and the
sentences of such requests.

6.2.1.1 Requests for properties and constraint checks

A property is defined as a mapping from the receiver and the input arguments to the output arguments. If the
mapping is visualized as a table with a column for the object identity (1) and a column for each argument
(A1, .. .An), then the request is satisfied if there is arow in the table matching on the receiver (1) and al
the arguments that had values when the request was made. The values in the row for the other arguments
(those without a value at time of request) are the solution for those arguments. An exampl e of thisfor opera-
tion is shown in Figure 64.

In addition to having a solution (the output argument values set), arequest also has atruth value. If the map-
ping succeeds (thereisarow in the visualized table), then the request istrue; if it fails (thereis no row), then
the request isfalse.

A request for an operation without arguments has no solution per se; it is simply true or false. The mapping
in this case can be visualized as a table with a single column for the object identity (I). The table contains

37See Clause 7 for a discussion of propositions.
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only theinstances for which the operation istrue. The request istrueif thereisarow matching on the request
receiver (I). Alternatively, the mapping can be visualized as a table with two columns, one for the object
identity and the other containing either “true” (succeeds) or “false” (fails), as the operation is either true or
false for that instance.

A request for a constraint is the same as for an operation without arguments. The constraint check is simply
true or false.

A request for an attribute has no input arguments and only one output argument (the identity of the related
value class instance). A request for a participant property has no input arguments and only one output argu-
ment (the identity of the related state class instance).

6.2.1.2 Logical sentences of requests

Logica sentences over property values are used for the realization of responsibilities (stating the methods
behind properties and constraints) and for stating pre-conditions and post-conditions. Together, a set of
requests forms a sentence specifying the necessary and sufficient conditions for the property to have the
valueV (or for the constraint, pre-condition, or post-condition to be satisfied). Every instance of a class uses
the same method to obtain the value of a given property or to check a named constrai nt.38

A request is the atomic formula out of which such sentences are constructed. A logical sentence is formed
from requests (logical propositions) combined using logical connectives such as and, or, not, if then,
forall. The truth of the sentence depends on the truth of its constituent propositions. If the sentence is
true, then the property has the valueV (or the constraint or condition holds); otherwise it does not.

If arequest involves multiple updates, and the request fails (i.e., isfalse), the state of the view “rolls back” to
the state prior to the request. If a request is of the form forall F: G, only G is alowed to perform
updates.

Asan example of theuse of forall, the commonOwner constraint of every checkingAccount can be
checked by the sentence:

forall ( checkingAccount has instance: CA): ( CA has commonOwner ).

This sentence can be read as “for every checkingAccount instance, CA, the commonOwner constraint
istruefor CA” or in amore natural fashion, “every checking account sati sfies the common owner constraint”
(see 6.7). The sentence isfalseif for any instance CA, the commonOwner constraint is not true.

6.2.2 Request syntax

Theform of arequest isthe samefor attributes, participant properties, operations, and constraints; it depends
only on the number of arguments and the nature of the request (get, set, etc.). The genera syntax is
explained here and illustrated individualy in 6.4.4 (for attribute), 6.5.4 (for participant property), (6.6.4 for
operation), and 6.7.4 (for constraint).

The operators : = (set value) and : '= (unset value) are valid only for single-valued properties. The opera-
tors : += (insert value) and : —= (remove value) are valid only for multi-valued properties and single-valued
collections.

6.2.2.1 Single-argument request: get value
a) A “getvaue’ request with one argument shall have the form:

385ee Clause 7 for a discussion of sentences and messages.
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I has P: V
where T isan instance, P isaproperty of T, and V isthe assumed value of that property.
This syntax coverstwo cases:
1) Thevariable v does not have avalue when the request is made. In this case,
i) If T hasavalue for its property P, then the request shall be true, and the request shall set
I'svaluefor its property P—i.e., the solution shall be value v.
ii) Otherwise, the request shall be false and shall have no solution.
2) Thevariable v has avalue when the request is made. In this case,
i) If I'sproperty P valueisV, then the request shall be true.
ii) Otherwise, the request shall be false, and v’s value shall be unchanged.
b) A “getvalue’ request without any argument has the form:
I has P
where T isaninstanceand P isaboolean attribute or asingle boolean argument operation. This
reguest is equivalent to the request
I has P: true
where“true” isaninstance of boolean.

6.2.2.2 Single-argument request: set value

a) A “setvaue’ request with one argument shall have the form:
I has P:=V

where T isan instance, P is a property of I, and v isthe value for the property. This syntax covers

two cases:

1) Vv hasno value when thisrequest is made. In this case, an exception shall be raised.

2) v hasavalue when this request is made. In this case, if Pis allowed to be the value V,%% if Pis
constant and has no value when the request is made, or if P is not constant, then I's P value
shall be set to v and the request shall be true. Otherwise, the request shall be false.

6.2.2.3 Single-argument request: unset value

a) An“unset value’ request with one argument shall have the form:
I has P:!=V

where I isan instance, P isa partia, nonconstant property of I, and v isthe value of that property.

This syntax covers two cases:

1) Vv hasno value when thisrequest is made. In this case, if I'sproperty P hasavalue, then v shall
be set to I's current P value, I's current P value shall be cleared, and the request shall be true.
If T does not have property P value, then the request shall be false.

2) Vv hasavauewhen thisrequest is made. Inthiscase, if 1's property P valueiscurrently v, then
T's P value shall be cleared and the request shall be true. Otherwise, the request shall be false.

6.2.2.4 Single-argument request: insert value

a) An “insert value” request with one argument shall be used for collection-valued or multi-valued
attributes and participant properties to add an element to the collection. It shall have the form:
I has P:+=V
where T isan instance, P is anonconstant, collection-valued or multi-valued property of I, and v is
the value to add to the collection.
This syntax covers two cases:

1) Vv hasno value when this request is made. In this case, an exception shall be raised.

3%The value could be disallowed for various reasons, such as the attribute being declared constant and aready having a value, the
proposed new value causing a uniqueness constraint to fail, a value constraint to be violated, etc.
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2) Vv hasavaue when this request is made. In this caseg, if the collection is allowed to contain the
valueV, v shall be added to 1’s P collection and the request shall be true. Otherwise, the request
shall befalse.

b) An attempt to add an element to a collection shall fail if it would result in aviolation of a declared
collection cardinality restriction.

6.2.2.5 Single-argument request: remove value

a) A “remove value’ request with one argument shall be used for collection-valued or multi-valued
attributes and participant properties of state classes to remove an element from the collection. It shall
have the form:

I has P:-=V

where I isan instance, P isanonconstant, collection-valued or multi-valued property of I, and v is
an element to be removed from the collection.

This syntax covers two cases:

1) v hasno value when thisrequest is made. In this case, if I's property P hasavalue, then v shall
be set to thefirst of T's current P values, that value shall be removed from I's current P values,
and the request shall betrue. If T does not have property P value, then the request shall be false.

2) Vv hasavalue when this request is made. In this case, if I's property P includes that value, then
that value shall be removed from I's current P values, and the request shall be true. Otherwise,
the request shall be false.

b) An attempt to remove an element from a collection shall fail if it would result in a violation of a
declared collection cardinality restriction. For example, an attempt to remove the last element from a
collection not allowed to be empty shall fail.

6.2.2.6 No-argument request

a) Theform of aconstraint check request or arequest for a property without argumentsis:
I has P
where I isan instance and P is either a named constraint or an operation of the classof I .

For example, (referring to Figure 69) if instance CCA of creditCardAccount hasalimit of
$15,000 and abalance of $10,000, then the request (constraint check)

CCA has bal anceUnderLim t

is true. However, an attempt to increase the balance by $7,000 violates the constraint (i.e., the
constraint “fails.”)

To illustrate an operation, assuming that creditCardAccount has an operation closeAc-
count that terminates an active account, then the request

CCA has cl oseAccount
terminates the account and istrue, if CCA is currently active. Otherwise, it isfase.

6.2.2.7 Multiargument request

a)  Only operations may use multiargument requests.
See 6.6.4 for specific examples.

6.2.2.8 Alternate syntax forms

a) Alternate forms of the request syntax may be used. Table 3 illustrates two examples of typical, use-
ful syntax equivalents. The full syntax for requestsis covered in Clause 7.
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Table 3—Alternative forms of request syntax

Equivalent
Instead of syntax Example
I has P : V V is I..P ‘Tom’ is
Cust#1l..name
I has P: V1, I has Account has
V1l has P2: V2 Pl1..P2: V2 owner..name: ‘Joe’

6.2.3 Request rules
6.2.3.1 Evaluation
The following rules summarize how areguest shall be satisfied. (See 7.5 for the details of message resolution.)

a) Arequest
I has P: A
shall betrueif each of the following stepsistrue:
1) ClasscC isthemost specific class (lowest in the hierarchy) for which I asan instance of C and P
isadirectly specified (not inherited) property of C.
2) Themethodis specified as
C. Self has P: V if, ¢ Sentence.
3) If thetypeof theargument is T and A has avalue, then A is an instance of T.
4) The effective pre-conditionis Pre.
5) The effective post-condition is Post.
6) Theconjunction

Sel f =1 —binding theformal parameter Self to the receiver instance I
V= A — binding the formal argument Vv to the actual argument value &
Pre — evaluating the effective pre-condition (which must be true)
Sent ence - evaluating the method (which must be true)
Post — evaluating the post-condition (which must be true)

istrue.

7) If thetype of the argument is T and A has avalue, then 2 isan instance of T.
Steps 1 and 2 find the right method. Step 3 type checks the input arguments. Steps 4 and 5 find the
pre-conditions and post-conditions, setting the variables Pre and Post, respectively. Step 6 solves
for the truth of the request. Step 7 type checks the output arguments.

b) If arequest for aproperty fails, no updates shall be done.

6.3 Property

Some responsi bilities® are met by knowledge and behavior that, in turn, are determined by properties. A
property is an inherent or distinctive characteristic or trait that manifests some aspect of an object’s knowl-
edge or behavior. There are three kinds of property:

a) Attributes
b) Participant properties due to relationships
c) Operations

400ther responsibilities are met by adhering to imposed constraints; these are discussed in 6.7.
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A class has properties; a class instance has property values. A class instance’s knowledge is determined by
the values of its attributes, participant properties, and constant, read-only operations. A class instance’s
behavior is determined by the state-changing operationsit can perform.

The concepts that are common to propertiesin general are described in this subclause. The specializations of
property are discussed and illustrated individually in 6.4 (attributes), 6.5 (participant properties), and 6.6
(operations). Only the distinctions will be discussed in these latter subclauses. Statements that apply gener-
ally to al three are made here and are not repeated in the more specific subclauses.

6.3.1 Property semantics
6.3.1.1 Naming/signature

All properties are named. The detail of property naming is discussed individually in 6.4.1.1 and 6.4.2.3 (for
attribute), 6.5.1.1, 6.5.2.2, and 6.5.3.1 (for participant), and 6.6.1.1 and 6.6.2.3 (for operation). For a multi-
valued property, a corresponding single-valued collection property is often needed, and vice versa. Therules
for name construction of such propertiesis discussed in 6.3.1.6 through 6.3.1.8 and 6.3.2.4.

In certain cases, properties with the same name may occur in multiple classes (or even the same class). In one
case, a name may have one consistent meaning but differing signatures*® (in the same or different classes). In
another case, properties of the same name may have differing meaningsin different classes. Furthermore, aprop-
erty of agiven name and the same meaning (with the same or different signatures) is permitted to be a property
of aclassaswell asany of its subclasses. In this case, the property in the subclassis said to override the property
in the superclass, i.e., the property has the same name and same meaning but a different realization.

Thisfacility is powerful, but it can easily be abused.*2 The semantic concept used to constrain overriding is
the principle of substitutability (see 5.4.1).

6.3.1.2 Visibility

Encapsulation always hides the realization of a property. However, the interface of a property can also be
hidden by declaring it as either

a) Protected—visible only to the class or the receiving instance of the class (available only within
methods of the class or its subclasses), or

b) Private—visible only to the class or the receiving instance of the class (available only within the
methods of the class)

A property that is not hidden is considered public, i.e., visible to any requester (available to all). The abstract
interface for arequester includes whatever is visible to the requester.

Initial modeling is concerned primarily with public properties. However, protected or private properties are
typically introduced in afully specified model (see 8.2) in support of a constraint or property realization.

6.3.1.3 Instance-level/class-level

A property can be an instance-level property or a class-level property. A property is at the instance level if it
applies to each instance individually. An example of an instance-level property of the customer class might
be customerName (an attribute). Each instance of customer may have a name specified.

415ee 6.3.2.1 for the definition of signature. See 7.5.1 for adiscussion of signature matching.

42Using the same name with the same meaning but with different signatures or realizations can be appropriate. Using the same name
but with different meaningsis problematic, especially if both names appear in the same view, since using the same name for two distinct
concepts makes it more difficult to reason about the concepts.
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A property isat the class-level if it appliesto the class as awhole. An example of aclass-level property of the
customer class might be numberOfCustomers, specified as the count of the number of instances in the
class. As another example, a single maximum credit limit (e.g., $100) might apply equally to al instances of
the customer class.

6.3.1.4 Mapping

All properties are mappings between thi ngs.43 Asdepicted in Figure 43, amapping M from aset Dto aset R
isaset of ordered pairs [ X, Y ] wherexisinDand Y isinR.An attribute is a mapping from a class or
the instances of a class to the instances of a value class. A participant property is a mapping from the
instances of a state class to the instances of a state class. An operation is a mapping from the (cross product
of the) class or instances of the class and the instances of the input argument types to the (cross product of
the) instances of the other (output) argument types. Examples of each of these types of mapping are givenin
6.4, 6.5, and, 6.6, respectively.

Figure 43—Mapping

6.3.1.5 Mapping completeness

A mapping is either a total mapping (every element in D maps to an element in R) or a partial mapping
(some elements in D are unmapped). Referring to Figure 43, the mapping M istotal if for every X in D, there
isat least onepair [ X, Y ] inM. A property declaration of mandatory constrains a mapping to be a
total mapping (see 6.3.2).

If a mapping is partial, the property is allowed to have no val ue A property declaration of optional
allows a mapping to be a partial mapping (see 6.3.2).

6.3.1.6 Single-valued/multi-valued

A mapping M issingle-valued if for any X in D, thereisat most onepair [ X, Y ] inM. If themappingis
single-valued, it is a function. A property declaration of single-valued constrains the mapping to be a
function (see 6.3.2). A property with a single-valued mapping is referred to as a single-valued property.

43|n mathematics, this mapping is called a“relation.”

“The precise interpretation of “no value” has bedeviled database theorists for decades. There is as yet no definitive interpretation. Var-
ious popular options have attempted to make distinctions, such as “there isavalue but it is unknown,” “such avalue is not applicable,”
and “it may be applicable but there is no such value for thisinstance.” For example, if abank provides for tracking when disputes occur
for accounts, a checking account might have a 1astDisputeDate attribute. For accounts that are never involved in adispute, there
will never be avalue for such adate; it isinapplicable to these instances. As another example, an employee's birthdate may be unknown
when the instance is created, and the attribute may have no value for some period of time. The option this standard adopts is that the
lack of avalue means simply “thereisno such value” Thereisno implication that “no value” meansthereisavalue but it is not known;
thereis no insistence that “no value” means that such avalue isinapplicable. The interpretation is simply that, if thereis no value, then
therereally is no value. It means that, according to our model, an employee with no birthdate value has no birthdate. Thisis analogous
to the unexamined assumption that, if the value recorded for an attribute is 3, then the value in the real world really is 3.
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If amapping is not afunction, it is multi-valued (i.e., elementsin D map to multiple elementsin R). A prop-
erty declaration of multi-valued alowsthe mapping to be multi-valued (see 6.3.2). The defaultissin-
gle-valued. In terms of Figure 43, single-valued and multi-valued describe the mapping M. A property
with amulti-valued mapping is referred to as a multi-valued property.

6.3.1.7 Scalar-valued/collection-valued

The class to which a property maps may be a scalar-valued class or collection-valued class. A scalar-valued
classisaclassin which each instance is a single, atomic value, such as an integer. Each instance of a collec-
tion-valued classis a collection of values, such as a set of integers.

For a property that maps to a scalar-valued class, a property value v isasingle, atomic value. For a property
that maps to a collection-valued class, a property value v isitself a collection of values. In both cases, the
property value v is asingle instance of the class to which the property maps. Note that in terms of Figure 43,
scalar-valued and collection-valued describe the class R.

A property that maps to a scalar-valued class is referred to as a scalar-valued property (smply scalar prop-
erty). A property that maps to a collection-valued class is referred to as a collection-valued property (ssmply
collection property).

6.3.1.8 Implicit properties

If aclass has a collection property p (s) , thenit implicitly has a corresponding multi-valued property p. If
a class has a multi-valued property p, then it implicitly has a corresponding collection property p (s) . For
every instance T and value v, the propertiesp and p (s) arerelated according to the following:

I has p: Vifandonlyif I has p(s)..member: V.
6.3.1.9 Collection cardinality

For a property that maps to a collection class, the values of the property can be constrained to a specific car-
dinality by adeclaration of its collection cardinality. For example, adeclaration of cardinality Posi-
tive prohibits the empty collection. If no collection cardinality is specified, a collection-valued property
may map to a collection of any number of members, including zero (the empty collection).

6.3.1.10 Constant

An attribute or participant property is a constant if it is unchanging once assigned. For example, the
openedDate of achecking account is assigned when the account instance is created and not changed dur-
ing the life of the account. An operation is a constant if the same set of input values always yields the same
set of output values.

A property that is declared to be both mandatory and constant must be assigned when the instance is
created. A property that is declared to be optional and constant may be left unassigned when the
instance is created and then assigned later. Once assigned, it may not be changed.

6.3.1.11 Read-only
A property can be declared to be read-only. A property is read-only if it causes no state change, i.e., it

does no updates.
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6.3.1.12 Intrinsic

A property can be declared to be intrinsic, specifying that the property is constant and has a single-val-
ued, total mapping. Single-valued specifies the mapping; the mapped-to value could be a collection.

6.3.1.13 Subclass responsibility

A property of an abstract class that must be overridden in its subclasses is declared to be a subclass respon-
sibility. A property that is a subclass responsibility is a specification in the superclass of an interface that
each of its subclasses must provide; its realization is not specified in this class. Instead, its realization is
deferred to the subclass(es) of the class.

6.3.1.14 Uniqueness constraint

A unigueness constraint is a specification that no two distinct instances of the class may agree on the values
of all the properties named in the unigqueness constraint. An attribute or participant property can be declared
to be apart of a unigueness constraint.

With the concept of identity there is no need that every class declare a restriction that forbids any two
instances of a class from agreeing on all property values, i.e., there is no inherent requirement to declare a
primary key. (Seeaso 6.7.2)

6.3.1.15 Derived

A property whose value is determined by computation is derived. An attribute or participant property can be
derived. A derived property has no implicit realizations; the modeler must provide the realizations.

6.3.2 Property syntax

As an aid to reasoning about properties and arguments, various elaborations on the nature of the property
may be declared using the constructs of Visibility, PrefixCommalList, Arguments, and Suf-
fixCommalList. Figure 44 illustrates several combinations of properties, arguments, and declarations for
both a state class and a value class.

The syntax that is common to properties in general is described here. The specializations of property syntax
are discussed and illustrated individually in 6.4.2 (for attribute), 6.5.2 (for participant property), and 6.6.2
(for operation). Only the distinctions will be discussed in these latter subclauses. The common syntax is pre-
sented here and is not repeated in the more specific subclauses.

6.3.2.1 Naming/signature

a) Thesignature of aproperty shall consist of (in this order):
1) Theclassname,
2) A colon,
3) The property name,
4) A property operator, and
5) Thenumber and type of its arguments.
b) A fully qualified property name shall consist of (in this order):
1) Thefully qualified class name*
2) A colon,
3) The property name,
4) The property operator,

45gee 5.1.3.1 and 8.1.3.1 for a description of fully qualified naming.
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State Class
checkingAccount

| (class, attribute) theNextNumber

(class, operation) create

(attribute) checkingAccountNumber ( intrinsic, uniqueness constraint 1)
(operation) post: [ CheckNumber ( input ), TheAmount ( input ) | (optional)
(attribute) openedDate: date ( constant )

(attribute) firstActivityDate: date ( optional, constant )

(attribute) lastDepositDate: date

(attribute) lastDisputeDate: date ( optional )

(attribute) isActive: boolean

(attribute) feature(s): set(serviceOption) ( optional, cardinality Positive )
| (operation) protectionTransfer: Amount ( optional )

Value Class
vector

(attribute) x: integer ( uniqueness constraint 1)
(attribute) y: integer ( uniqueness constraint 1)
(attribute) slope: real ( optional, derived )

(attribute) magnitude: real ( derived )

(attribute) isHorizontal: boolean ( optional, derived )
(operation) plus: [ V1: vector (input ), V2: vector ]

N~ S/

Figure 44—Properties with declarations

5) Thetype, wheretypeis

i) thetype of that argument (for a single-argument property), or

ii) alist of the types, one per argument (for a multiargument property).
For example, in Figure 44, the vector value class shows a signature for the property slope. In
this signature, the property nameis s1ope, the property operator is :, and its single argument is of
type real.
Similarly, lastDepositDate in checkingAccount shows a signature in which 1astDe-
positDate is the property name, : is the property operator, and its single argument is of type
date. There are two additional, implied signatures for this property as follows:
— viewName:checkingAccount:lastDisputeDate:= date (tosetitsvalue), and

— viewName:checkingAccount:lastDisputeDate: != date (toclearitsvaue).

¢) Inadiagram, the property signature may be shown as an annotated property signature (the signature
with additional keyword annotations) inside the class rectangle.
d) Thegenera form of an annotated property signature® is
Visibility ( PrefixCommalList ) PropertyName Arguments  ( SuffixCommalList )
€)  With the exception of the PropertyName, each of the elements of the annotated property signa
ture shall be optional.
f)  Asinal labels (see 4.2.3), whitespace (spaces, tabs, etc.) in the annotated property signature shall

be maintained.

4| nformal diagrams like this and Figure 45 are used throughout this clause to illustrate signature syntax. The precise syntax is provided
by the BNFin Clause 7.
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6.3.2.2 Visibility annotation

Visibility ) ( PrefixCommalList) PropertyName  Arguments (SuffixCommalList)

Figure 45—Property visibility annotation

a) The visibility annotation of a property shall specify whose methods may reference the property—
i.e, “who can seeit?’ (see Figure 45). The interpretation of the visibility annotation shall be as pre-
sented in Table 4.

b)  For aproperty declared with the get property operator (:), the default visibility for the update opera-
tors(:=, :!=, :+=, :-=)isprivateif thegetisprivate, otherwise protected.

Table 4—Interpretation of visibility notation
Meaning that the property Then thisvisibility prefix
If the property is isaccessibleto shall be used

Public All (accessible without restriction) unannotated
Protected The class or the receiving instance of the class within |

methods of the class and its subclasses
Private The class or the receiving instance of the class within I

methods of the class only

6.3.2.3 PrefixCommalist clause

PrefixCommalist isacommaseparated list of one or more keywords (see Figure 46).

b)

80

Visibility (C (PrefixCommalList ) PropertyName Arguments ( SuffixCommalList )

(class, attribute)

(class, operation )

(attribute )

( operation )

( participant )

Figure 46—PrefixCommalList

A property may be designated as one of the keywordsin Table 5.

For example, in Figure 44, checkingAccountNumber is an attribute property, and post isan
operation property. Figure 61 illustrates participant properties.
“class” shal designate a property as a class-level property.

Copyright © 1999 |IEEE. All rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

c) If“class” isnot specified, the property shall be an instance-level property.

d) ThekeywordsinaPrefixCommalList may comein any order—i.e., keyword order shall not be
meaningful.

€) MultiplePrefixCommaLists shall beequivalentto asingle PrefixCommalList with thekey-
words separated with commas. For example, (class) (attribute) isequivaentto (class,

attribute).
Table 5—PrefixCommalList keywords
Keyword Meaning
attribute The property is an attribute
participant The property is a participant property
operation The property is an operation

6.3.2.4 Property name clause

a) The property name shall be suffixed with (s) for any single-valued, collection property. This suffix
shall be used only with a single-valued collection property.

6.3.2.5 Arguments clause

Visibility ~ ( PrefixCommalList ) PropertyNWumeanﬁxCommaList )

: Argument
= /( Argument)\
:I=  Argument

+= Argument \

= Argument \

[ Argumentl, Argument?, ..., MrlentN ]

ValueName
ValueName: ClassName
ClassName
ValueName ( ArgSuffixCommalList)
ValueName: ClassName ( ArgSuffixCommal.ist)
ClassName @SufﬁxCommaList) N
(updatable)
(input)
(updatable, input)

Figure 47—Arguments
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: Argument

:= Argument

: = Argument

:+= Argument

:—= Argument

where the property operators*’ shall have the meaning:

get value

set value

unset value

insert value (to a collection or multi-valued property)

remove value (from a collection or multi-valued property)

or

2) A list of arguments (for an operation property only):*®

‘ : [ Argumentl, Argument2, ..., ArgumentN ]
b) Argument shal beoneof:

ValueName

ValueName: ClassName
ClassName

ValueName ( ArgSuffixCommaList )

ValueName: ClassName ( ArgSuffixCommalList )
ClassName ( ArgSuffixCommalist )

C¢) ValueName shal be the name of the argument value.
d) ValueName shal haveitsfirst letter capitalized.

€) ClassName shall bethe argument type.

f)  ClassName shall either begin with alower-case letter or be enclosed in single quotes.

0) ArgSuffixCommalList shal only be applicable for operation properties (see also 6.6.3).

h) ArgSuffixCommalList shall beacomma-separated list of one or more keywords, including

1) updatable, and

2) input.

i) Theitemsinan ArgSuffixCommalist may come in any order—i.e., order shall not be mean-

ingful.

473ee Clause 7 for afull explanation of these property operators.
48Arguments are not named. The realization is matched to the interface by the position of the arguments. See Clause 7 for the detailed

rules for typing.

82

Copyright © 1999 |IEEE. All rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

6.3.2.6 Overriding the property operator built-ins
a) The property operators are, in essence, built-in methods for which IDEF1X implements a special
syntax. It shall be possible to override the built-in semantics of these operators to allow (for exam-
ple) the modeler to specify atrigger on a“set value” statement (see also Clause 7).

6.3.2.7 SuffixCommalist clause

Visibility = ( PrefixCommalList)  PropertyName Ar ( SuffixCommalList )

( mandatory | optional, single-valued | multi-valued, cardinality X, constant, read-only,

intrinsic, uniqueness constraint N, subclass responsibility, derived )

Figure 48—SuffixCommalList

a8 SuffixCommalList shall beacomma-separated list of one or more of the following keywords:
1) mandatory | optional,
2) single-valued | multi-valued,
3) cardinality X,
4) constant,
5) read-only,
6) intrinsic,
7) uniqueness constraint N,
8) subclass responsibility,
9) derived,
where “ | " denotes alternative keywords and underlining designates the default keyword if none is
explicitly specified.
b) “cardinality X" meansthat the collection property’svalue (acollection) shall have acollection
cardinality restriction where x shall be one of the optionsin Table 6:

Table 6—Options for coordinating restriction

Option Meaning
Positive Collection may not be empty
Zero Collection shall have a maximum of one member
N Collection shall contain exactly N members, where N is any positive integer

C) “read-only” meansthe property shall cause no state changes, i.e., shall do no updates.

d) “uniqueness constraint N” means the property shall be part of “uniqueness constraint N”
where N shall be an unsigned nonzero integer.

€) Indicating that a property isderived shall be part of the realization—i.e., it shall be supported by
the graphics only as a convenience for the author of the class.

f)  Order shall not be meaningful in a SuffixCommalList—i.e, theitemsina SuffixCommalist
may appesar in any order.

0g) Repeated, contiguous occurrences of the same whitespace character withinasuffixCommalList
may be collapsed into a single occurrence of that character.

Copyright © 1999 IEEE. All rights reserved. 83



IEEE

Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

h) Multiple SuffixCommalLists shall beequivalent toasingle Suf fixCommalist withthekey-
words separated with commas. For example, (subclass responsibility) (derived) is
equivalentto (subclass responsibility, derived).

6.3.2.8 Keyword combinations

a) Table 7 summarizes the interpretation of the keyword combinations for mapping completeness and
collection cardinality as they shall apply to single-valued and multi-valued, scalar, and collection

properties.

Table 7—Keyword combination for mapping completeness and collection coordinality

Mapping Collection
Property type completeness | cardinality Specification
Single-valued, nmandat ory - Shall always be mapped (to exactly one value).
scalar property )
opt i onal - May be unmapped;
When mapped, shall be mapped to exactly one value.
Single-valued, mandat ory - Shall always be mapped (to exactly one collection) with no
collection property restriction on the collection cardinality.
mandat ory ca X Shall always be mapped (to exactly one collection) with a
restriction to a specified collection cardinality.
opt i onal - May be unmapped;
When mapped, shall be mapped to exactly one collection
with no restriction on collection cardinality.
opt i onal ca X May be unmapped;
When mapped, shall be mapped to exactly one collection
with arestriction to a specified collection cardinality.
Multi-valued, nmandat ory - Shall always be mapped (to at least one value).
scalar property -
opt i onal - May be unmapped;
When mapped, shall be mapped to any number of values.
Multi-valued, nandat ory - Shall always be mapped (to at least one collection) with no
collection property restriction on collection cardinality.
nmandat ory ca X Shall always be mapped (to at least one collection) with a
restriction to a specified collection cardinality.
opt i onal - May be unmapped,;
When mapped, shall be mapped to any number of collections
with no restriction on collection cardinality.
opt i onal ca X May be unmapped;
When mapped, shall be mapped to any number of collections
with arestriction to a specified collection cardinality.
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b)

0)

d)

If asingle-valued, collection property x (s) isdeclared

1) mandatory, and

2) ca P or ca N (for N greater than 0),

then the cardinality of the implicit multi-valued property x shall be mandatory; otherwise it shall
beoptional.

If amulti-valued property x isdeclared mandatory, then the cardinality of theimplicit single-valued,
collection property x (s) shdl be

1) mandatory, and

2) ca P.

If a multi-valued property x is declared optional, then the cardinality of the implicit single-
valued, collection property x (s) shal be optional.

6.3.2.9 Keyword abbreviation

a)

b)

Each of the keywords in the syntax may be abbreviated by the first one or more letters, so long as no
ambiguity results. For example,

( class, operation ) create
may be abbreviated as

( ¢cl, o) create.
If the keyword is a phrase, it may be abbreviated using the first |etter(s) of each word in the phrase
and omitting intervening spaces. For example,

name ( uniqueness constraint 1, subclass responsibility )
may be abbreviated as

name ( ucl, sr ).
For another example,

feature(s) ( cardinality P )
may be abbreviated as

feature(s) ( ca P ).

If the keyword is a hyphenated phrase, it may be abbreviated using thefirst letter of each word in the
phrase and omitting the hyphen. For example,
feature ( multi-valued )
may be abbreviated as
feature ( mv ).
Figure 49 illustrates the use of keyword abbreviations.

6.3.3 Property rules

6.3.3.1 Naming/signature

a)
b)

A property of agiven signature may appear in more than one classin aview.
No two properties with the same signature may appear in the same class.

A more complete explanation of the signature uniqueness requirementsis givenin 7.5.3.

6.3.3.2 Mapping completeness

a)

If aproperty is not mandatory, then optional shall be declared.

6.3.3.3 Collection cardinality

a)

Specification of collection cardinality shall be used only for an attribute or participant property.
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State Class
checkingAccount

| (cl, a) theNextNumber

(cl, o) create

(a) checkingAccountNumber ( i, ucl )

(o) post: [ CheckNumber (i), TheAmount (i) ] (o)
(a) openedDate: date (¢)

(a) firstActivityDate: date (o, c)

(a) lastDepositDate: date

(a) lastDisputeDate: date (0 )

(a) isActive: boolean

(a) feature(s): set(serviceOption) (o, caP)
| (o) protectionTransfer: Amount (o)

Value Class
vector

(a) x: integer (ucl )

(a) y: integer (ucl )

(a) slope: real (o,d)

(a) magnitude: real (d)

(a) isHorizontal: boolean (o, d)

(o) plus: [ V1: vector (i), V2: vector ]

N~

\

Figure 49—Property declarations using abbreviated keywords
6.3.3.4 Read-only
a) A property declared read-only shall cause no state change, i.e., it shall do no updates.
6.3.3.5 Intrinsic
a) If aproperty is single-valued, mandatory, and constant, then intrinsic should be declared (and,
because they are redundant, the keywords constant and mandatory should be omitted from the
SuffixCommalList).

6.3.3.6 Subclass responsibility

a) A property declared to be a subclass responsibility shall also be declared (as an override) in the
appropriate subclasses.

6.3.3.7 Uniqueness constraint

a) A uniqueness constraint shall be declared for a value class in order to use an associative literal (see
5.3.1).

6.3.3.8 Property ordering

a) Inany context in which the ordering of propertiesisimportant, the order specified in the graphic rep-
resentation of the properties shall be used.
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6.3.4 Property realization

a) Therealization of aproperty shall be stated using the specification language (see Clause 7) in one of
three forms depending on the number of arguments, as follows:
1) class: Self has property ifgg sentence.
2) class: Self has property: V ifgg sentence.

3) class: Self has property: [ V1, V2, ..., Vn ] ifyef sentence.
where
class shall be the class name,
Self shall be a variable name denoting the receiver of the property request (typi-

cally Self is used),
property shall be the property name (which may be in the form of p orp (s)),
vV, Vi shall be variables denoting the values of the arguments (optionally with argu-
ment suffixes), and
sentence shall be a sentence giving the necessary and sufficient conditions for the
instance Self to map to the argument values or, if there is no argument, for
the property to be true for the instance.
b) If aproperty redlization for acollection property p (s) isgiven but noneis given for the correspond-
ing multi-valued property p, then the realization
class: Self has p: V ifg.s Self has p(s)..member: V.
shall be assumed.
c) If aproperty realization for a multi-valued property p is given but none is given for the correspond-
ing single-valued collection property p (s) , then adefault realization shall be assumed, as follows:
1) For aparticipant property,
class: Self has p(s): Vs ifgy.¢ Vs is { V where (Self has p: V) }.
i.e., the corresponding collection property shall be set-valued.
2) For al other kinds of property,
class: Self has p(s): Vs ifg.¢ Vs is [ V where (Self has p: V) ].
i.e., the corresponding collection property shall be list-valued.
This default implies a cardinality of mandatory.

6.4 Attribute

People mentally abstract attributes of a class from the sense that individual instances of the class are
described by valuesin asimilar way. Everyone does this abstraction; it is part of common sense.

An attribute expresses some characteristic that is generally common to the instances of a class, representing
akind of property associated with a set of real or abstract things (people, objects, places, events, ideas, com-
binations of things, etc.) that is some characteristic of interest. It is named for the sense in which the
instances are described by the values. For example, the registeredvVoter class acquires a dateOf-
Registration attribute by abstracting from the individual instances of registered voter being described
by specific values of their date of registration. Figure 50 illustrates a state class checkingAccount that
has three attributes: balance, lastDepositDate, and checkingAccountNumber.

Any class can have attributes, including value classes. Since generalization is based on common attributes,
relationships, and operations, having attributes available for value classes strongly affects the generalization
and classification of the value classes. Value classes that incorporate unit of measure, such as Fahrenheit and
Celsius, can be consolidated into a single class (such asa temperature value class) with attributes such
asfahrenheit and celsius. Eachisan attribute with avalue class (type) of real. Similarly, the value
class date might usefully have attributes such aseuropeanFormat and americanFormat. Eachisan
attribute with a value class (type) of string. In Figure 50, the value class date is shown with three
attributes: month, day, and year.
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balance / da
lastDepositDate: date le
checkingAccountNumber y
N e

Figure 50—Attribute

An attribute is an interface specification not a realization specification. The declaration of an attribute is not
acommitment to its form of realization; there is no implication that an attribute is realized as stored data.

6.4.1 Attribute semantics

The semantics that are common to properties in general are described in 6.3.1. Only the specializations of
property semantics applicable to attributes are discussed and illustrated here. Statements that apply generally
to attribute as a property are not repeated in the material that follows.

6.4.1.1 Naming

While it is common to use the value class name as the attribute name (asin Figure 55 for temperature),
this use is not arequirement. An attribute name is arole name for the value class. An attribute role nameis a
name used to clarify the sense of the value class in the context of the class for which it is a property. Figure
50 illustrates the use of an attribute role name, 1astDepositDate, that differs from the name of its value
class, date. The name of the value class is not required to be part of the attribute name. For example, the
attribute comfortLevel of ahotel room could map to the value class temperature.

6.4.1.2 Mapping

There are two kinds of attributes, instance-level and class-level. The more common kind is instance-level.
An instance-level attribute is a mapping from the instances of a class to the instances of a value class. A
class-level attribute is a mapping from the class itself to the instances of a value class. For either kind of
attribute, the value classis a so referred to as the type of the attribute.

In Figure 50, the attribute 1astDepositDate isexplicitly typed, i.e., specified as a mapping to the value
class date. However, it is sometimes desirable to leave an attribute untyped, i.e., not explicitly specify a
value class. Thisis common for the early models at the Integration level (see 8.2). In Figure 50, the attributes
balance, checkingAccountNumber, month, day, and year areall untyped. Even in the case when
an attribute is untyped, every attribute value is still an instance of some value class. An untyped attribute
simply defers judgment. If, on the other hand, the intent is to specify that an instance of any classis accept-
able, the attribute should be typed to the built-in class any.

Figure 51 provides a sample instance diagram supporting the view in Figure 50.
6.4.1.3 Mapping completeness

An éttribute is assumed to be a total mapping unless it is specified optional (meaning that some attribute
instances map to no instance of the value class). For example, in Figure 53, the attribute 1astDisputeDate
isdeclared optional becauseacheckingAccount may not (yet) have been involved in any dispute.
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— = date: D

checkingAccount: #7

balance: 100 / ;nontlh(; 1

lastDepositDate: D ay: 1005

checking AccountNumber: 1001 \year. .,
Ne

Figure 51—Attribute instance and attribute value

6.4.1.4 Single-valued/multi-valued
An attribute is assumed to be single-valued unlessmul ti-valued is specified.
6.4.1.5 Scalar-valued/collection-valued

A value class instance to which an attribute maps need not be atomic; an attribute can map to a collection
value class. Such an attribute is collection-valued. For example, a checking account may have a fea-
ture (s) atribute that identifies a set of service options selected for the account (see Figure 53).

6.4.1.6 Collection cardinality

Asintroduced in 6.3.1.9, when a property maps to a collection class, the number of members in the collec-
tion can be constrained to a specified cardinality. Since the optional attribute feature (s) incheckin-
gAccount is collection-valued, the specification as shown in Figure 53 further requires that the attribute,
when mapped, prohibit a mapping to the empty collection.

Referential integrity for membersthat are state class oidsis the obligation of the modeler. (Thisisin contrast
to participant properties, where referential integrity is guaranteed by the semantics of relationship.)

6.4.1.7 Constant

Typically, a state class attribute can be updated, i.e., the mapping to the instances of avalue class by a given
state class instance can change over time.*® However, in some cases it is necessary to prohibit change to an
attribute value. An attribute is specified as constant to indicate that its value is unchanging once assigned.
For example, the openedDate attribute in checkingAccount (Figure 53) has been specified
constant. For aderived attribute, a designation of constant means the same as it does for operation (see
6.6).

An attribute of avalue class cannot be updated. Therefore, al value class attributes are inherently constant.
6.4.1.8 Intrinsic

An attribute can be declared to be intrinsic, which implies single-valued, a total mapping, and constant. For
example, acheckingAccountNumber might be considered an intrinsic property of the account; thereis
only and always a single checking account number for an account and it cannot meaningfully change.

“The mapping to the value classinstance is updated, not the attribute value itself. For example, if an instance has an attribute with avalue
of 17 and the attribute is updated to 2 3, the mapping of that instance to avalue for the attribute is changed—17 isnot madeinto 23.
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6.4.1.9 Uniqueness constraint

An attribute should be declared to be part of a uniqueness constraint when there is a need to ensure that no
two distinct instances of the class agree on the values of all the properties that are named in the uniqueness
constraint. For example, in TcCo (see C.7) the attribute partName has been declared a uniqueness con-
straint; no two instances of apart may have the same name.

6.4.1.10 Derived

An attribute whose value is determined based on the values of other propertiesis a derived attribute. Figure 52
illustrates aderived attribute, available. Theavailable aftributein creditCardAccount isderived
basedonthel1imit (increditCardAccount) andbalance (inaccount).

customer account
P

owns balance

_ O

-

(owner) is owned by

[ |
creditCardAccount

— checkingA ccount
limit . .| _provides overdraft protection for

(co) balanceUnderLimit O _ (co) commonOwner
avalable (derived) | (protector) 'S Protected by

Figure 52—Derived attribute available in creditCardAccount

6.4.2 Attribute syntax

The syntax that is common to propertiesin general isdescribed in 6.3.2. Only the specializations of property
syntax applicable to attributes are discussed and illustrated here. Statements that apply generally to attributes
as properties are not repeated in the material that follows. Figure 53 illustrates attribute syntax.

checkingAccount

(attribute) checkingAccountNumber ( intrinsic, uniqueness constraint 1)
(attribute) openedDate: date ( constant )

(attribute) lastDepositDate: date

(attribute) lastDisputeDate: date ( optional )

(attribute) isActive: boolean

(attribute) feature(s): set(serviceOption) ( optional, cardinality Positive )
| (class, attribute) theNextNumber

Figure 53—Attribute syntax

6.4.2.1 Visibility annotation

a) The visibility of an attribute may be restricted as protected or private using this standard visibility
annotation (see 6.3.2.2) at the beginning of the attribute signature. For example, in Figure 53,
theNextNumber isaprotected attribute.
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6.4.2.2 PrefixCommalist clause

a) An attribute shall be designated using the keyword attribute. For example, in Figure 53,
checkingAccountNumber isdesignated as an attribute.

b) “class” shal designate an attribute as a class-level attribute. For example, in Figure 53, theN-
extNumber isaclass-level atribute.

c) If “class” isnot specified, an attribute shall be an instance-level attribute. For example, in Figure
53, the attributes other than theNextNumber are instance-level attributes.

6.4.2.3 Property name clause

a) The name of a collection-valued attribute shall end with (s). For example, in Figure 53, the role
name feature (s) has been given to the attribute that identifies a set of service options for a
checking account.

b) Thenameof ascalar attribute shall be formed in this standard, singular manner. For example, in Fig-
ure 53, the name checkingAccountNumber hasbeen given to the attribute that uniquely identi-
fies a checking account.

6.4.2.4 Arguments clause

a) An attribute signature shall include no more than one argument, the value class name (see
Figure 54).

b) If the attribute maps to a scalar value class, then the Arguments clause shall contain the name of
the related class. In Figure 53, the signatures for each of the attributes openedDate,
lastDepositDate, and lastDisputeDate include an argument date, which isthe name of
the value class to which each attribute maps.

¢) If theattribute mapsto acollection value class, then the Arguments clause shall contain the name
of the collection class.

d) If the attribute maps to a collection value class, then the Arguments clause may optionally pro-
vide the name of the collection’s constituent value class as a parameter. For example, in Figure 53,
the attribute feature(s) (in checkingAccount) maps to the collection set whose
instances are sets of serviceOption (s).

Visibility ( PrefixCommalList ) AttributeNamy Grguments ( SuffixCommalList )

o

ﬁ ClassName ):

~

CollectionName ( ClassName )

SimpleClassName

Pair ( ClassName, ClassName )

Figure 54—Attribute arguments
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6.4.2.5 SuffixCommalist clause

a)  Thefollowing keyword options shall bevalid in the SuffixCommaList of an attribute:
1) mandatory|optional,
2) single-valued|multi-valued,
3) cardinality X,

4) constant,

5) read-only,

6) intrinsic,

7) uniqueness constraint N,

8) subclass responsibility,

9) derived,

where “ | " denotes alternative keywords and underlining designates the default keyword if none is
explicitly specified.

These options areillustrated in the following examples:

— InFigure53, lastDisputeDate isanoptional attribute.

— InFigure 53, feature (s) isan attribute restricted to map to a nonempty collection (when
mapped) usingthe cardinality P keyword.

— InFigure53, openedDate isaconstant atribute.
— InFigure53, checkingAccountNumber iSan intrinsic attribute.

— InFigure 53, checkingAccountNumber isdeclared asuniqueness constraint 1
for the state class, meaning that no two instances of a checking account may have the same
account number value.

— InFigure52, available isaderived datribute.
6.4.2.6 Value class mapping graphic

a) Depiction of the mapping from a class to the value class is commonly omitted from a view dia-
gram.50 However, when it is useful to depict this mapping, the mapping shall be represented asaline
connecting the value class to the related class with an “open triangle” at the related class end, as
shown in Figure 55. Thisfigureillustrates

1) A mapping from astate class (hotel) to the value class temperature, and
2) A mapping from avalueclass (temperature) tothevaueclassreal.

hotel
temperature real

averageTemp: temperature fahrenheit: real

N~— S N—

Figure 55—Value class mapping graphic

b)  When the mapping isto a collection class, the mapping line may go to either
1) Thecaollection class, asimplied above, or

50| n fact, the graphic representation of value classesis generally omitted from the view diagram.
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2) Theclass of the elementsin the collection, with the kind of the collection (e.g., list or set) writ-
ten on the mapping line beside the class of the elements, as shown in Figure 56.

checkingAccount

serviceOption

feature(s): set (serviceOption) (o, caP) name

abbrevName

N——

Figure 56—Collection-valued value class mapping graphic

6.4.3 Attribute rules
6.4.3.1 Mapping

a) An attribute may be explicitly associated with an underlying value class—i.e., typed.
b) A collection-valued attribute shall be list-valued unless explicitly typed to some other collection.

6.4.3.2 SuffixCommalist clause

a) Anattribute of avalue class shall beinherently constant.

b) A state class attribute declared read-only, for which no overrides are supplied, may never have
any value.

6.4.4 Attribute requests

A request may be for the value of an attribute. A request for an attribute has no input arguments and only one
output argument (the identity of the related value classinstance). A request isissued by one instance to another
instance and is the only way to access or ater an attribute value. The detailed discussion of request/instance
success and failure combinationsin 6.2.3 appliesto attributes, and its specifics are not repeated here.

6.4.4.1 Request: get value

a) A “getvaue’ attribute request shall have the form givenin 6.2.2.1.

For example, if CA isaninstance of checkingAccount (illustrated in Figure 53), thenits last-
DepositDate attribute value may be read by issuing the following request:

CA has lastDepositDate: TheLastDate
or, alternatively, by the following reguest:

ThelLastDate is CA..lastDepositDate.

1) Whenthevariable TheLastDate hasno value when the request is made:

i)  If therequested attribute is atotal mapping (asisthe attribute 1astDepositDate), or it
isan optional attribute (e.g., 1astDisputeDate) that has avalue, then the request vari-
able shall have avalue when the request is satisfied, and the request shall be true.

ii) If the requested attribute is optional and has no value at the time of reguest, then the
request shall fail.

2) Whenthevariable TheLastDate hasavalue when the request is made:

i) If the variable’'s value is the current value of the requested attribute (e.g., the attribute
lastDepositDate hasthe same value as TheLastDate), then the request shal be
true.

ii) Otherwise, the request shall be false.
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b) Thesamerequest form shall hold true for accessing the value of avalue class attribute. For example,

0
d)

e

if vistheinstance of vector (illustrated in Figure 44) that has an x attribute value of 100, then
the request (proposition)

V has x: 100
istrue. The request

V has x: O
isfalse. For avariable X with an unknown value, the request

V has x: X
solvesfor X, finding that x is100 (and istrue).
For another example, if T istheinstance of temperature that represents 32° Fahrenheit, then the
request for its ce1sius property value may be stated as

T has celsius: C
Thisrequest has asolution of 0 (zero); C isset to 0, and the request istrue. Furthermore, making the
request (asserting the proposition) that

T has celsius: 0
istrue, but asserting that

T has celsius: 7
isfalse.
A request for the value of an optional attribute shall be falseif the attribute is unmapped.
If an optional, collection-valued attribute permits mapping to the empty collection and if the
attribute is mapped, then arequest for its value shall be true, and that collection may be empty.
If the optional, collection-valued attribute prohibits mapping to the empty collection, a request
for its value shall either return a nonempty collection value or be false.
For example, assuming the variable Features hasno value at the time of request, the request

CA has feature(s): Features

sets Features to the set of service options for CA. Since this attribute is optional with the
empty collection prohibited, Features will not be set to the empty set. Issuing a request with a
valuein Features teststhisvalue against CA’scurrent feature (s) vaueandistrueor faseas

appropriate.

6.4.4.2 Request: set value

%4

a)
b)

A “set value” attribute request shall apply only to single-valued (scalar or collection) attributes.
A “set value” attribute request shall have the form givenin 6.2.2.2.
For example, if CA isaninstance of checkingAccount, thenits lastDepositDate attribute
value may be set to avalue by issuing the request:
CA has lastDepositDate:= NewDate
where NewDate isaninstance of date.
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6.4.4.3 Request: unset value

a)
b)

0)

An “unset value” attribute request shall apply only to single-valued (scalar or collection) attributes.
An “unset value” attribute request shall have the form givenin 6.2.2.3.
For example, if CA isaninstance of checkingAccount, thenits lastDisputeDate attribute
value may be removed by the request
CA has lastDisputeDate:!= OldDate.
1) |Ifthevariable0ldDate hasno vaue at the time of request, then
— Thevariable 01dbate issettothevalueof CA’'slastDisputeDate,
— Thevalueof CA’slastDisputeDate iscleared, and
— Therequest istrue.
2) Ifthevariable0ldDate hasavaue at thetime of request,
i) If thevaue of 01dDate isthe current value of lastDisputeDate for instance Ca,
then
— Therequest istrue, and
— Thevaueof CA'slastDisputeDate iscleared.
ii) Otherwise,
— Therequestisfalse, and
— Thevaueof CA’'slastDisputeDate isunchanged.
iii) Ineither case, the value of the variable 01dDate isunchanged.
The attempt to clear amandatory attribute shall fail and shall be false.

6.4.4.4 Request: insert value

a)

For a collection-valued (or multi-valued) attribute only, a single value shall be added to an existing
collection using the “insert value” request form given in 6.2.2.4.51
For example, if CA is an instance of checkingAccount, then an addition to its feature (s)
attribute collection may be made by the request

CA has feature(s) :+= NewServiceOption
where NewServiceOption isavariable containing the oid of the one to be added.

6.4.4.5 Request: remove value

a)

For a collection-valued (or multi-valued) attribute only, a single element shall be removed from an
existing collection using the “remove value” request form given in 6.2.2.5.52
For example, if CA isaninstance of checkingAccount, then the removal of a member from its
feature (s) attribute collection may be made by the request

CA has feature(s):-= 0ldServiceOption
where 01dServiceOption isavariable containing the oid of the one to be removed.

6.4.5 Attribute realization

6.4.5.1 Derivation/representation

a)

b)

Therealization of aclass shall specify whether an attribute is

1) Part of the representation (i.e., stored), or

2) Derived (i.e., has aderivation agorithm).

If no derivation is stated, the attribute shall be part of the representation.

S1Thevalue classis not actually “updated” by this request but rather the mapping is changed to the instance of the collection that hasthe
resulting collection of values. The sameistrue for the “remove” request.

52The intended semantics of a multi-valued property arethat if avalue is added, then it should be there for a subsequent get, and that if
itisremoved, it should not be there for a subsequent get.
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0

For each derived attribute, the realization shall specify the derivation using the specification lan-
guage (see Clause 7) in the form given for a property realization with one argument (see 6.3.4).
Figure 57 shows the realization of the derived attribute, available, in creditCardAccount
(Figure 52).

creditCardAccount: Self has available: A ifg.¢
A is Self..limit - Self..balance.

Figure 57—Realization of creditCardAccount attributes

For the value class temperature (in the variation shown in Figure 3), unbeknownst to the
requester the representation is in kelvin, and the public fahrenheit, celsius, and kelvin
attributes are derived in terms of that representation. The fahrenheit, celsius, and kelvin
derivation algorithms are shown in Figure 58.

temperature: Self has fahrenheit: F if ¢
C is Self..celsius,
F is 32 + C * 9/5.
temperature: Self has celsius: C ifg.¢
K is Self..kelvin,
C is K - 273.16.
temperature: Self has kelwvin: K ifg.¢
K is Self..rep.

Figure 58—Realization of temperature value class attributes

The meaning of the celsius derivation may be seen in anatural language paraphrase of the derivation:
the temperature instance Self has a celsius value C if it is the case that
K is Self’s kelvin value, and
CisK-273.16.

Inthevalueclassvector (shown in Figure 72), the chosen representation is the combination of the
X, Y, z coordinates. Figure 59 shows an example of the specification language for the derived
attribute magnitude of the vector value class. The specifics of the syntax are explained in
Clause 7.

vector: Self has magnitude: M ifg¢
M is ( Self..x "2 + Self..y "2 ) ~0.5.

Figure 59—Realization of magnitude attributes

6.4.5.2 Interaction with constraints

96

a)

A redlization may specify an interaction between responsibilities. For example, the realization in
Figure 57 illustrates the interaction between two responsibilities. In this case, the successful deriva-
tion of available relies onthe balanceUnderLimit constraint to ensure that balance
never exceeds 1imi t, thereby avoiding a negative valuefor available.
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6.5 Participant property

A relationship participant property (simply, participant property) is a property of a state class that reflects
that class's knowledge of a relationship in which instances of the class participate. When a relationship
exi sts between two state classes, each class contains participant properties for that relationship.

Participant properties arise from relationships and are based on instance identity. For every relationship,
there are at |east two participant properties, onein each of the related classes. A scalar participant property is
amapping from a state class instance to an instance of arelated (not necessarily distinct) state class. A col-
lection-valued participant property is a mapping from a state class instance to a collection of instances of a
related (not necessarily distinct) state class. For every collection-valued participant property, thereisacorre-
sponding multi-valued scalar participant property, and vice versa.

If state class c1 isrelated to state class ¢ 3 then, by virtue of the relationship, there is a participant property
c3incl and aparticipant property c1 in c3 (see Figure 63). For example, if every transaction is incurred
by one account, then the knowledge of the transaction’s account is reflected by a participant property of
transaction, and the knowledge of the account’s transactions is reflected by participant properties of
account. If an account can be owned by many customers, and a customer can own many accounts, then
the knowledge of the account’s customers is reflected by participant properties of account, and the knowl-
edge of the customer’s accountsiis reflected by participant properties of customer (see Figure 61).

A participant property is an interface specification not arealization specification. The declaration of a partic-
ipant property is not a commitment to its form of realization; there is no bias to implement the participant
property by index, list, or other stored data.

6.5.1 Participant property semantics

The semantics that are common to properties in general are described in 6.3.1. Only the specializations of
property semantics applicable to participant properties are discussed and illustrated here. Statements that
apply generally to participant property as a property are not repeated in the material that follows.

6.5.1.1 Naming

The name of a participant property reflects the name of the class at the other end of the relationship. If the
related class has been given arole name in the relationship, the role name, rather than the class name, is used
as the basis for the participant property name. (See 6.5.3.1 for naming rules.)

6.5.1.2 Mapping
A participant property isamapping from an instance of a state classto an instance of a state class.
6.5.1.3 Mapping completeness

The mapping completeness of a participant property is dictated by the cardinality of the relationship that it
reflects (see 5.5). If the relationship cardinality prohibits the case where there is no related instance, then the
scalar participant property’s mapping is total. Such a participant property is declared to be mandatory as
part of the relationship syntax. For example, in Figure 61, the participant property owner in account is
mandatory because each account must be owned by at |east one owner (customer).

If the relationship cardinality permits the case of no related instance, then the scalar participant property’s
mapping is partial. Such a participant property is specified as optional aspart of the relationship syntax.
For example, in Figure 61, the participant property account in customer is optional because not
every customer owns an account.
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6.5.1.4 Single-valued/multi-valued

If the relationship cardinality specification allows more than one related instance or is a cardinality specifica-
tion of z, then it specifies a multi-valued participant property that is scalar. The participant property
transaction inaccount ismulti-valued because each account may incur many transactions.

If the cardinality specification allows at most one related instance and is not a cardinality specification of z,
the participant property is single-val ued.®3 For example, in Figure 61, the participant property account in
transaction issingle-valued because every transaction isincurred by at most one account.

6.5.1.5 Scalar-valued/collection-valued

If the relationship cardinality specification allows more than one related instance or is a cardinality specifica-
tion of z, then it specifies a collection-valued participant property that is single-valued. For example, in Fig-
ure 61, the participant property transaction(s) in account is collection-valued because each
account may incur many transactions and is single-valued because there is only one collection.

If the cardinality specification allows at most one related instance and is not a cardinality specification of z,
the participant property is scalar-valued (simply, scalar).>* For example, in Figure 61, the participant prop-
erty account in transaction isscalar because every transaction isincurred by at most one account.

6.5.1.6 Collection cardinality

Asintroduced in 6.3.1.9, when a property maps to a collection class, the values of the property can be con-
strained to a specific cardinality by a declaration of its collection cardinality. A collection-valued participant
property’s cardinality is generally specified as a part of the relationship syntax.

For example, in Figure 61, the property account (s) incustomer iSoptional. Thebasic sense of this
relationship cardinality would permit mapping to the empty collection. If the intent is to prohibit mapping to
the empty collection when mapped then the participant property syntax should specify cardinality
Positive aswell. If no collection cardinality is specified, a collection-valued property may map to a col-
lection of any number of members, including zero (the empty collection).

6.5.1.7 Constant

A participant property is constant if it is unchanging once the relationship has been formed. For example, in
TcCo (see C.7) the participant property component of structureltem is constant®™ since a
structurelItem cannot be related to a different component (part) and still be the same
structureltem. By contrast, the participant property standardvendor of boughtPart isnot con-
stant since this standard vendor for aboughtPart may change over time.

6.5.1.8 Intrinsic

A participant property is an intrinsic participant property of the class when it reflects an intrinsic relation-
ship, i.e, the relationship is single-valued, a total mapping, and constant (see 5.5). In Figure 61, the
account reflected in the dependent state class transaction is an intrinsic participant property of
transaction. This states that for each transaction thereis at most one account (i.e, single-val-
ued). Furthermore, for every transaction, there is aways a related account (i.e., a total mapping).

5310 support amodeling style that represents all relationships consistently as collection-valued, constrained to a specified cardinality, an
dternative form of “at most one” is provided (see 5.5). In the discussions here, the scalar form will be assumed for cardinalities of “at
most one” and “exactly one”

Ssee footnote 53.
551n Figure C.21, the participant property component of st ructureItem isspecified asintrinsic, which subsumes constant.
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Finally, it makes no senseto changea transaction to adifferent account because that would change
the very nature of the transaction (i.e, constant).

6.5.1.9 Uniqueness constraint

A participant property should be declared to be part of a uniqueness constraint when thereis aneed to ensure
that no two distinct instances of the class agree on the values of all the properties that are named in the
uniqueness constraint. For example, in TcCo (see C.7) the participant properties assembly and compo-
nent in structureItem have been declared a uniqueness constraint: no two instances of a struc-
tureItem may havethe same combination of assembly and component. The uniqueness constraint in
boughtPart illustrates a uniqueness constraint declaration that includes both an attribute and a participant
property; ho boughtPart may duplicate the combination of avendor’sidentity along with avendor-
PartId value.

6.5.1.10 Derived

A participant property whose value is determined based on the values of other properties is said to be a
derived participant property. Figure 60 is a view of product offerings, which can be either product items
(e.g., acan of tomato sauce) or packaged items that contain product items or other packaged items (e.g., a
box of pizza mix). It would be nice to be able to refer to all ingredients (and their properties) whether
directly contained or included via a packing chain. The derived participant property ingredient (s) in
productOffering provides thisfacility for reasoning about ingredients. These derivations presume the
presence of a constraint ensuring that no productOffering includesitself.

productOffering

(p) packagedItem ( derived)

includes é
T
\packagedltem | |
product

(p) ingredient(s) (derived)

contains . .
ingredient
Item

Figure 60—Derived participant properties

Therealization of the derivation of this participant property can be expressed in the specification language as

packagedItem: Self has ingredients(s): Is ifg.¢
Is is [ I where
( Self has productOffering(s) ..member: PO,

PO has ingredient(s)..member: I)].

The redlization of the multi-valued participant property ingredient is
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packagedItem: Self has ingredient: I ifg.¢
Self has productOffering..ingredient: I.

6.5.2 Participant property syntax

The syntax that is common to propertiesin general isdescribed in 6.3.2. Only the specializations of property
syntax applicable to participant properties are discussed and illustrated here. Statements that apply generally
to participant properties as properties are not repeated in the material that follows. Figure 61 illustrates
participant property syntax.

account

(participant) owner(s): set(customer)

(participant) owner: customer (multi-valued)

(participant) transaction(s): set(transaction)

(participant) transaction: transaction (multi-valued, optional)

is transaction
incurs
owns | owned (participant) account: account ( intrinsic )
by
customer Py (owner)

(participant) account(s): set(account)
(participant) account: account (multi-valued, optional)

Figure 61—Participant properties

6.5.2.1 PrefixCommalist clause

a) A participant property shall be designated using the keyword participant. For example, in
Figure 61, account (in transaction) isdesignated as a participant property.
b) Thekeyword class shall not be applicable to participant properties.

6.5.2.2 Property name clause

a) A participant property hame may optionally be placed inside the rectangle for the state class for
which it is a property. When shown, it shall be displayed asillustrated in Figure 61.
A participant property is present in a state class for each relationship in which the state class partici-
pates, but it need not be listed inside the class box (because doing so is graphically redundant with
the information on the relationship arcs and the cardinality annotations). A participant property is
normally displayed inside the class rectangle only when needed to state a constraint, like unique-
ness, that could not otherwise be stated.>®
b) If arole name has been designated for the related class, the participant property name shall reflect
that role name. For example, in Figure 61,
1) The role name owner has been given to customer’s participation in the customer/
account relationship.
2) For the collection-valued form, the participant property name in account has been given the
name owner (s).

56An illustration of the display of a participant property with a declared uniqueness constraint can be found in Figure C.21.
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3) For the multi-valued form, the participant property has been given the name owner.

4) No role name has been given to account’s participation in the customer/account rela
tionship; accordingly, the collection-valued form of the participant property in customer has
been given the name account (s), corresponding to the class name suffixed with (s).

5) Because it is scalar, and single-valued, there is no collection-valued form, and the participant
property name account in transaction isformed without this suffix.

6.5.2.3 Arguments clause

Visibility ( PrefixCommalList ) Participanthuments (SuffixCommalList )

a)
b)

0)

Argument

ClassName
CollectionName (ClassName)

Figure 62—Participant arguments

A participant property signature shall have exactly one argument.

If the participant property is scalar, then the Arguments clause shall contain the name of the
related state class. For example, in Figure 61, account: account (in transaction) illus
trates a participant property that is scalar.

If the participant property is collection-valued, then the Arguments clause contains the name of a
collection class, with the name of the related class asits parameter, as shown in Figure 62. For exam-
ple, Figure 61 illustrates the syntax of the following collection-valued participant properties:

account (s): set (account) (in customer)
owner (s): set (customer) (in account)
transaction(s): set(transaction) (in account)

6.5.2.4 SuffixCommalist clause

a)

Thefollowing keyword options shall bevalid inthe Suf fixCommalist of aparticipant property:

1) mandatory | optional,
2) single-valued | multi-valued,

3) cardinality X,

4) constant,

5) read-only,

6) intrinsic,

7) unigqueness constraint N,

8) subclass responsibility,

9) derived,

where “ | ” denotes alternative keywords and underlining designates the default keyword if none is

explicitly specified.

These are illustrated in the following examples:

— InFigure 61, account (in customer) and transaction (in account) are optional
participant properties.

— InFigure6l, account (intransaction)isan intrinsic participant property.
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6.5.3 Participant property rules

6.5.3.1 Naming

a)
b)

<)
d)

102

Assignment of participant property namesis a built-in feature of the language (i.e., accomplished by

the assignment of relationship role names); it shall not be overridden.

A scalar participant property name shall be the role name specified for the related class or, if thereis

no role name, the name of the related class.

A collection participant property name shall be the corresponding scalar name suffixed with (s) .

If the relationship mapping is multi-valued, there shall be both

1) A scaar participant property, and

2) A collection participant property—where the collection participant property name shall be the
scalar participant property name suffixed with (s).

For example, in Figure 63,

— Each c1 isrelated to multiple ¢ 3 (s) , where the role name by which c1 knowseach c3isr1,
and

— Each c3 isrelated to a most one c1, where there is no role name, and

— Each c1 isrelated to multiple c2 (s) , where thereis no role name, and

Each c2 isrelated to at most one c1, where r2 isthe role name by which c2 knows c1.

The mapping from c1 to c2 is multi-valued,
— Themapping from c2 to c1 issingle-valued,
— Themapping from c1 to ¢3 ismulti-valued,
— Themapping from c3 to c1 issingle-valued,
and therefore,

— c1 hasfour participant properties named, respectively, r1, r1 (s), c2,and c2 (s):
— rlisamulti-valued, scalar property

— rl (s) isasingle-valued, collection property
— c2isamulti-valued, scalar property

— c2(s) isasingle-vaued, collection property.
— ¢2 hasone participant property named r2:
— r2isasingle-valued, scaar property.

— ¢3 hasone participant property named c1:
— clisasingle-valued, scaar property.

cl 2
c2(s) 2
2 (mv) O——eo

rl(s) (r2)
r1 (mv)

A3 (r1)

cl

Figure 63—Participant property hames

Copyright © 1999 |IEEE. All rights reserved.



IEEE

SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

Furthermore,
— For each instance of c1:

The value of property c2 (s) is the collection of the identity(s) of the related c2
instance(s)

The value of property r1 (s) is the collection of the identity(s) of the related c3
instance(s)

Each value of property c2 istheidentity of arelated c2 instance

Each value of property r1 istheidentity of arelated c3 instance

— For each instance of c2:

The value of property r2 istheidentity of therelated c1 instance

— For each instance of c¢3:

The value of property c1 istheidentity of therelated c1 instance

6.5.3.2 Mapping

a) A collection-valued participant property shall be set-valued unless explicitly typed to some other
collection.

6.5.3.3 Mapping completeness

a)  The mapping completeness keyword syntax of a participant property shall always be a reflection of
the relationship cardinality specification, and possibly a further refinement, as presented in Table 8.

b)  The relationship graphic and participant property keyword combinations shown in Table 8 shall be
the only allowed combinations.

6.5.3.4 PrefixCommalist clause

a) All relationships, and therefore all participant properties, shall be instance-level. Therefore, the key-
word class shal not beincluded inthe PrefixCommalist for aparticipant property.

6.5.3.5 SuffixCommalist clause

a) A participant property declared read-only, for which no overrides are supplied, may never have
any value.

b) If a participant property is declared derived, its corresponding participant property (i.e., repre-
senting the inverse relationship) shall also be derived.
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Table 8—Summary of relationship graphic syntax and

participant property keywords

.

Signature keywords
Relationship for mapping | for collection
graphic syntax | completeness cardinality Specification
Single-valued, Scalar Participant Property:
| m (NA) exactly 1 i.e., always mapped.
o (NA) not more than 1 i.e., zero (unmapped) or 1.

Single-valued, Collection Participant Property:

m aways mapped ...with mapping to the empty collec-
tion allowed.

o may be unmapped  ...and, when mapped, may map to the
empty collection.

o ca P may be unmapped  ...and, when mapped, may not map to
the empty collection (“positive” car-
dinality).

z | m ca 7 always mapped ...and may map only to either a col-
lection of 1 or the empty collection.

o ca l may be unmapped  ...and, when mapped, may map_only
to acollection of 1.

o ca 2z may be unmapped  ...and, when mapped, may map_only
to either acollection of 1 or the
empty collection.

p | m ca P always mapped ...and may not map to the empty col-
lection.

n | m ca N always mapped ...and must map to a collection of
exactly N (where N is anon-zero,
unsigned integer).

o ca N may be unmapped  ...and, when mapped, must map to a
collection of exactly N.

Multi-valued, Scalar Participant Property:
o may be unmapped  ...and, when mapped, may map to any
number.
[
7 o ca Z may be unmapped  ...and, when mapped, may map to at
most 1.
[
=) m ca P always mapped .toatleast 1.
L

n m ca N always mapped ...to exactly N (where N isanon-zero,

unsigned integer).
L
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6.5.4 Participant property requests

A request may be for the value of a participant property. A request for a participant property has no input
arguments and only one output argument (the identity of the related state class instance). A request is issued
by one instance to another instance and is the only way to access or ater a participant property value. The
detailed discussion of reguest/instance success and failure combinations in 6.2.3 applies to participant prop-
erties, and its specifics are not repeated here. In all cases the semantics are such that any corresponding
updates to the participant property in the related instance are done as a part of the request.

a) For a participant property, the semantics of get, set, unset, add, and remove requests shall be the
same as for attributes (see 6.4.4).
For example, if CA isaninstance of account (illustrated in Figure 61) with two accounts (211 and
A22), then after the following requests:
CA has account(s) :+= A33
CA has account (s) :+= A44
ca ownsfour accounts: 211, 222, A33, and A44.
Continuing the example, if CA is an instance of checkingAccount now owning four accounts
(211,222,233, and A44), then after the following requests:
CA has account(s) :—-= A22
CA has account (s) :—= A44
CA ownstwo accounts: A11 and A33.

6.5.5 Participant property realization

a) Theredization of nonderived participant properties is built-in to the semantics of the specification
language and need not be specified by the modeler.

b) If desired, the built-in realization may be overridden or aderived participant property derivation rule
may be stated using the form given for property realizations with one argument (see 6.3.4).

6.6 Operation

The operations of a class specify the behavior of its instances.®” People abstract the operations of a class
from what individual instances of the class are able to do or have done to them. From the facts that individual
insurance policies accept claims against them, that savings accounts have withdrawals, and that restaurants
take reservations, we abstract the operations of the classes: the insurancePolicy class has an
acceptClaim operation, the savingsAccount class has a makeWithdrawal operation, and the
restaurant classhasatakeReservation operation.

An operation is an abstraction of what an instance does. An attribute or participant property is an abstraction
of what an instance knows. The two are intimately related. The insurance policy that can accept a claim
knows what the policy covers and in what amounts. It uses that knowledge to accept the claim. The savings
account knows its balance and knows the identity of the owner of the account. It uses that knowledge to do
the withdrawal.

Operations can perform input and output, and can change attribute and participant property values. Opera-
tions can be stated using any property operator syntax, i.e., read, set, unset, insert, and remove syntax.
Within the model, operations are the only way to use values and effect change; there are no free-floating pro-
cesses, activities, functions, or procedures. Every operation is associated with one class and is thought of as
aresponsibility of that class. No operations are the joint responsibility of multiple classes.

57Because of this dynamic aspect, an operation may also be called an active property. In the literature, there has been a distinction in
this terminology. Operation came from ODMG-93 [B11] as meaning something with multiple arguments; it included both mutable and
immutable classes so it could be read-only. Active property was originaly intended to mean something that does something and
included things that did not have arguments. However, in this document the terms are used interchangeably.
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A request to an operation causes a method to be run, i.e., executing or “evaluating” it. An operation may
require input arguments and may set output arguments. The value of the output argument isreferred to asthe
“value of the operation” or the “solution.”

6.6.1 Operation semantics

The semantics that are common to properties in genera are described in 6.3.1. Only the specializations of
property semantics applicable to operations are discussed and illustrated here. Statements that apply gener-
ally to operation as a property are not repeated in the material that follows.

6.6.1.1 Naming

An operation is given anamethat istypically averb or verb phrase. The name should be chosen to reflect the
sense of the activity that is represented by the operation. For example, acceptClaim, makeWith-
drawal, and takeReservation would be representative operation namesfor an insurancePolicy,
asavingsAccount,andarestaurant, respectively.

6.6.1.2 Mapping

There are two kinds of operations, instance-level and class-level. The more common kind is instance-level.
An instance-level operation is a mapping from the (cross product of the) instances of the class and the
instances of the input argument types to the (cross product of the) instances of the other (output) argument
types. A class-level operation is a mapping from the (cross product of the) class itself and the instances of
the input argument types to the (cross product of the) instances of the other (output) argument types.

An intuitive example is the operation p1us, which adds two integers, and can be visualized as the mapping
table shown partially in Figure 64 to illustrate the instance 1 and its output argument response for each pos-
sible input argument. In this case, the mapping is from the cross product of the instance (1) and the Addend
into the Sum.

integer

( plus: [ Addend: integer (input), Sum: integer ] j

output argument

integer :: plus
input argument\ Addend Sum /

instance
\ 1 0 1
1 1 2

1 2 3

Figure 64—Operation mapping table

In another example, the operation p1us in the class vector (Figure 65) adds two vectors, yielding a new
result vector. If

VH is vector with ( x: 100, y: 0 ),
VV is vector with ( x: 0, y: 100 )

then
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VH has plus: [ VV, V ],
V == vector with ( x:100, y:100 ).

Any class can have operations, including value classes.
6.6.1.3 Mapping completeness

An operation is total when it gives a solution or produces a response for al instances and valid input argu-
ment values. The plus operation in vector is total because any two vectors can be added to yield a
unique result vector. The keyword mandatory designates atotal mapping (see 6.6.3.2).

An operation is partial when it may have no meaning for some instances, i.e., it may not give a solution or
produce a response. This concept can be thought of like a mathematical partial function, e.g., divide isa
partial function because divide by zero is not specified. slope (of avector) is partia because a vertical
vector has no dope. In a business example, a refinance operation would be partial because a mortgage
might be already paid off and thus the notion of refinance would have no meaning. In a second business
example, the makeWithdrawal operation in savingsAccount is not total. A withdrawal can occur
only if there is enough in the account to cover the withdrawal. The keyword optional designates apartia
mapping (see 6.6.3.2). For example, in Figure 44 the operations post and protectionTransfer (in
checkingAccount) have been specified as optional operations.

6.6.1.4 Single-valued/multi-valued
An operation is single-valued unless declared mul ti-valued. Fortheclass real, amulti-valued, scalar
squareRoot operation and/or a single-valued, collection squareRoot (s) operation could be defined.
With such definitions, the following would al be true in the specification language:

4 has squareRoot: 2

4 has squareRoot: -2

4 has squareRoot(s): { 2, -2 }
6.6.1.5 Scalar-valued/collection-valued
An operation that returns a single value (such as add) or returnsasingle value at atime (such as square-
Root) is scalar. For collection-valued operations where several values are correct, such as square-
Root (s) above, asuccessful request returns all truthful solutionsin asingle collection.
6.6.1.6 Constant
An operation is aconstant if the same set of input values always yields the same set of output values.
6.6.1.7 Read-only
An operation is read-only if it does not change any attribute or participant property. This includes private as
well as public and protected properties.58 Thus, an operation declared read-only may request only
read-only responsibilities.
6.6.1.8 Intrinsic
An operation can be declared to be intrinsic, which implies single-valued, constant, and total. The declara-
tion of intrinsic for an operation means that it is a constant and always returns a response (total) that has a

single value (scalar).

58This precludes caching the result of a constant read-only derivation.
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6.6.2 Operation syntax

The syntax that is common to propertiesin general is described in 6.3.2. Only the specializations of property
syntax applicable to operations are discussed and illustrated here. Statements that apply generally to opera-
tions as properties are not repeated in the material that follows. Figure 65 illustrates operation syntax.

vector

(attribute) x: integer (ucl)

(attribute) y: integer (ucl )

(attribute) slope: real ( optional, derived )

(attribute) magnitude: real ( derived )

(attribute) isHorizontal: boolean ( optional, derived )
(operation) plus: [ V1: vector (input ), V2: vector ]

- /

Figure 65—Operations

6.6.2.1 Visibility annotation

a) Thevishility of an operation may be restricted as protected or private using this standard visibility
annotation at the beginning of the operation signature (see 6.3.2.2). For example, in Figure 65 the
operation plus (in vector) is public. In Figure 44, the operation post (in checkingAc-—
count) is public while the operation protectionTransfer has been specified as a protected
operation.

6.6.2.2 PrefixCommalList clause

a)  Anoperation shall be designated using the keyword operation. For example, in Figure 65, plus
is designated as an operation.

b) “class” shall designate an operation as a class-level operation.

c) If“class” isnot specified, an operation shall be an instance-level operation. For example, in Fig-
ure 44, create is a class-level operation property. The remaining operations in Figure 44 are
instance-level operations.

6.6.2.3 Property name clause

a) Thesignature shall include the operation name. For example, in Figure 65 the name plus has been
given to the operation that adds two vectors.

6.6.2.4 Arguments clause

a An operation may have any number of arguments and possibly none. For example, the operation
close may be requested of an instance of aclass £ile. The operation delete may be requested
of aninstance of an account that is not active.

b) A class (either state or value) may be specified for each argument.

¢) Anargument value shall be an instance of the argument’s declared class; that classis called the type
of the argument.

d) If notypeisdeclared for an argument, then that argument shall accept any instance.>®

590f course, only the instances of afew classeswill give the results expected. Typing the arguments helps one to reason about the prop-
erty. On the other hand, insisting on typing too soon during model development is counter-productive. The conclusion is that both typed
and untyped arguments need to be supported. See Clause 7 for adiscussion of typing.
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6.6.2.5 ArgSuffixCommalList clause

a)

b)

<)
d)
e)

f)

Visibility  ( PrefixCommalList ) OperationN%gume%fﬁxCommaList )

:/(Argumer@\
é : [ Argumentl, ArgM, ArgumentN ]

ValueName
ValueName: ClassName
ClassName
ValueName ( ArgSuffixCommalList)
ValueName: ClassName ( ArgSuffixCommalList)
ClassName @gSufﬁxComma@\

(updatable)

(updatable, input )

(input)

Figure 66—Operation arguments

The following keyword options shall be valid in the ArgSuffixCommaList of an operation
argument:

1) updatable,

2) input

An operation argument shall be designated as updatable if the state class instance whose oid is
the argument value may be changed by the operation. Designating an argument updatable means
that arequest may be made to change the state of the instance identified by the argument.

An argument not designated as updatable means that there shall be no requests made to change
the state of the instance identified by the argument.

An operation argument shall be designated as input if the argument must have a value when the
operation is requested.

If an argument is not designated input, then it need not have a value when the operation is
regquested.

Multiple ArgSuffixCommaLists shall be equivalent to a single ArgSuffixCommalist
with the keywords separated with commas. For example, (updatable) (input) isequivalent
to (updatable, input).

6.6.2.6 SuffixCommalist clause

a)

The following keyword options shall be valid in the Suf fixCommaZList of an operation:
1) mandatory|optional,

2) constant,

3) read-only,

4) intrinsic,

5) subclass responsibility,
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where “ | " denotes alternative keywords and underlining designates the default keyword if none is
explicitly specified.

Figure 44 illustrates the operationspost and protectionTransfer (in checkingAccount), which
have been specified as optional operations.

6.6.3 Operation rules

6.6.3.1 Arguments clause

Table 9—Argument specification and values before/after invocation

If the argument had a value at invocation, did
Specification in argument suffix Value at invocation the instanceit identifies change?
updatable maybe maybe
updatable, input yes maybe
none maybe no
input yes no
a) If any argument has avalue at invocation, then it shall have the same value at completion.

9

h)

i)

)
k)

This rule refers to the argument value itself. For example, if the argument is X and X has a value
when the operation is requested (e.g., X is 10), then X is till 10 when the operation compl etes.

An input argument shall have avalue at invocation of an operation.

If an operation fails, then all argument values shall be unchanged.

If an operation succeeds, then all arguments shall have values.

If no value was supplied for an argument on invocation, a successful operation shall set it to avalue.

If avalue for anoninput argument is supplied on invocation, the operation shall succeed if the
value determined by the operation matches the value supplied; the operation shall fail if the values
do not match.

If at invocation an updatable argument’svalue is a state class instance, properties of that instance
may be changed by the operation, but the argument value itself shall not change.

If at invocation anonupdatable argument’s value is a state class instance, that instance shall not
be changed by the operation. Specifically, at the conclusion of the operation, al of the nonderived
participant properties and nonderived attributes of the instance shall be unchanged.

Table 9 summarizes the rules for argument specification and values before and after invocation, if
the mapping succeeds:

Only an argument that is a state class instance may be designated as updatable.
A collection-valued operation shall be list-valued unless explicitly typed to some other collection.

6.6.3.2 Mapping completeness

a)

b)

110

An operation shall be declared optional when it may have no meaning for some instances, i.e., it
may not give a solution or produce a response. For example, in Figure 44, the post operation has
been declared optional because a debit posting may only occur if there is enough in the account
to cover the amount of the debit.

An operation not declared optional shall bemandatory.
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6.6.3.3 Constant

a) Foraset of input values, an operation declared constant shall awaysyield the same set of output
values.

6.6.3.4 Read-only

a) Nooperation declared read-only shal have any of its arguments declared updatable.
b) If any operation argument is declared updatable, thenthe operation may not be declared read-
only.

6.6.4 Operation requests

A request may be for the application of an operation. A request isissued by one instance to another instance
and is the only way to invoke an operation. The detailed discussion of request/instance success and failure
combinationsin 6.2.3 applies to operations, and its specifics are not repeated here.

6.6.4.1 No-argument request

a) Theform of arequest for an operation without argumentsis givenin 6.2.2.6.
For example, assuming that creditCardAccount hasan operation closeAccount that termi-
nates an active account, then the request
CCA has closeAccount
terminates the account and is true, if CCA is a currently active account. Otherwise, the request is
fase.

6.6.4.2 Multiargument request

@) Theform of amultiargument request shall be:
I has P: [ V1, V2, ... Vn ]
where T is a specified class instance, P is a named operation of the class, and the Vs are argument
values.

b) Theargument values of a multiargument request shall appear in the same order as the corresponding
argumentsin P’s signature.

¢) Therequest shall betrueif instance I may perform the operation. It shall be false if the instance may
not perform the operation—i.e.,

1) If the operation has no meaning for the instance to which the request was sent, or
2) If performing the operation would yield an invalid solution.
For example, (referring to Figure 44) if VH is an instance of the value class vector (having an x
valueof 100 and ay value of 0) and it is sent the request
VH has plus: [ VK, VV ]
where
— VK isanother instance of the value class vector (having an x value of 0 and ay value of 50),
and
— VV (the output argument in thisplus request) has no value when the request is sent,
then
— therequest istrue, and
— VV hasthe value (identity) of the vector that has an x value of 100 and ay value of 50.
On the other hand, if vV (the output argument) has a value at the time of the request and that value
does not match the value determined by the operation, then the request fails.

d) An operation that is declared optional shall be false when a request is sent to an instance for
which the requested operation is not applicable or the result would be invalid. For example, (refer-
ring to Figure 44) if CA is an instance of checkingAccount with a balance of $100 (and no
overdraft protection), then posting check 101 for $75 using the request:
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CA has post: [ 101, 75 1]

is true, with the side-effect of decreasing the balanceto $25. On the other hand, the request to post
check 105 for $250 using the following request

CA has post: [ 105, 250 ]
isfase(i.e, it fals).

6.6.4.3 Single-argument request

a) Theform of asingle-argument operation request shall be:
I has P: V

b) In addition to this “get value’ form (:), a single-argument request may also be written using other
property operators—for example, the “set value” (: =) and “unset value” (: ! =) property operators.
These property operators shall be supported for an operation to provide representation-indepen-
dence.

For example, imagine that a property is designed originally as an attribute with its clients sending
“get” and “set” messages. Subsequently, a decision is made to change the property to an operation. It
should not be necessary to require all the client requests to change.

6.6.4.4 Update request

a) If an operation involves multiple updates and the operation fails (i.e., is false), then the state of the
view shall “roll back” to the state prior to the operation request.

b) If an operation is of the form:
forall F: G
only G shall be allowed to perform updates.

6.6.5 Operation realization
6.6.5.1 Operation specification

a) Theredlization of an operation shall be stated using the specification language (see Clause 7) in the
form given for property realizations with the appropriate number of arguments (see 6.3.4).

Figure 67 shows the realization of the operation post in checkingAccount (Figure 44). The
post operation reduces the checking account’s balance by the amount of the check being posted,
providing the balance remains greater than or equal to zero.

checkingAccount: Self has post: [ CheckNbr, CheckAmt ] ifg.¢
X is Self..balance - CheckAmt,
X >= 0,

Self has balance:= X.

Figure 67—Realization of checkingAccount operation
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Figure 68 shows the operation realizations for the vector value class that is shown in Figure 72).
Theplus operation, for example, adds two vectors by adding their X, y, z coordinates.

vector: Self has plus: [ V1, V2 ] ifg.s

X is Self..x + V1..x,

Y is Self..y + Vl1..y,

Z is Self..z + Vl..z,

V2 is vector with ( x: X, y: Y, z: Z ).
vector: Self has dot: [ V1, P ] ifg.r

P is Self..x * V1..x

+ Self..y * Vl..y

+ Self..z * Vl..z.
vector: Self has timeScalar: [ S, V2 ] ifg.¢

X is Self..x * S,

Y is Self..y * S,

Z is Self..z * S,

V2 is vector with ( x: X, y: Y, z: Z ).

Figure 68—Realization of checkingAccount operation

6.7 Constraint

In the real world only certain patterns make sense. These patterns are represented by constraints. A con-
straint is a statement of facts that are required to be true in order that the model conform to the real world.%0
A constraint is specified by alogical sentence over property values. If the sentence is true, the constraint is
met. If the sentence is false when the constraint is requested, an exception is raised. In other words, the con-
straint is disallowing something that makes no sensein the real world, screening out things that are not vali-
dated by the real world.

In IDEF1X, aconstraint is atype of responsibil ity.61 One class has the responsibility for knowing if the con-
straint is met. That constraint may be an instance responsibility or a class responsibility. A constraint can be
inherited like any other responsibility. Some constraints, e.g., uniqueness constraints, are specified simply by
marking annotations on the constrained property(s); others are explicitly named and stated in the specifica-
tion language. (See Clause 7 for afull discussion of constraints.)

6.7.1 Constraint semantics
6.7.1.1 Instance-level/class-level

A constraint can be an instance-level constraint or a class-level constraint. A constraint is an instance-level
congtraint if it istrue or false for each instanceindividually. A constraint isaclass-level constraint if it istrue
or false for the class. An example of an instance-level constraint is that the balance of a credit card account
must be below the limit for that account. An example of a class-level constraint is the requirement that the
total balance of all accounts not exceed alimit established for the entire set of accounts.

60The conditions expressed in the constraint must be true at the completion of a change of state. There may be points during the state
change where these conditions are violated, but these are not considered a violation of the constraint.

61T here are many transaction models, and this version of IDEF1X has chosen not to select one but rather provide only the most basic
notions of stating a constraint and providing away to check it. It is up to the modeler to specify when to check the constraint and what
to do when the constraint fails, in whatever way is appropriate to that model.
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6.7.1.2 Named constraint

Some constraints are inherent in the modeling constructs, such as value class constraints, uniqueness
constraints, and cardinality constraints. Other constraints, referred to as named constraints, are named and
specified by the user.2 A named constraint is explicitly named, its meaning is stated in natural language,
and itsrealization is written in the specification language.

Figure 69 introduces two named constraints that are explained below. The specification language statement
of these constraints is explained later in the discussion of constraint realization (see 6.7.5).

name: balanceUnderLimit

description: For each instance of a credit card account, the balance must be under the limit.

name: commonOwner

description: If acredit card account is providing overdraft protection for a checking account, then an
owner of the checking account must be an owner of the protecting credit card account.

customer . account
owns .| balance
owner) is owned by
creditCard Account .

— l provides overdraft checklngAccount
limit protection for (constraint) commonOwner
(constraint) balanceUnderLimit O -
available ( derived ) (protector) ;Srotected

by

Figure 69—Named constraints

6.7.1.3 Common ancestor constraint

A type of named constraint frequently encountered in modeling occurs when there are two or more paths to
an instance from one of its ancestors. Each path is a relationship or generalization or a series of such
constructs in which the child or subclass in one is the parent or superclass in the next. For example, if a
hotel hastwo related classes, room and tv, and they each have a common, related class tvInARoom,
then there are two paths between hotel and tvInARoom—one through room and one through tv, as
shown in Figure 70.88

A common ancestor constraint states arestriction on the instances of the ancestor to which an instance of the
descendent may relate. Such a constraint typically involves two or more relationship paths to the same
ancestor class and states either that a descendent instance must be related to the same ancestor instance
through each path, or that it must be related to a different ancestor instance through each path. The hotel/
room/tv exampleillustrates the former; thehotel that contains the room must be the hotel that owns
the tv.

52For example, the IDEF1X g3 metamodel stated 24 constraints that were specific to that model. See [B13], pp. 133-134.
3The model in Fi gure 70 corresponds to the key-style model in Figure 97, which uses foreign keys to state the business rule.
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hotel

contains
room tv

~
J

owns

tvInARoom

(constraint) hotelOwnsTv

Figure 70—Common ancestor constraint

The common ancestor constraint shown in Figure 70 is stated below:

name: hotelOwnsTv
description: For each instance of aTV in aroom, the hotel that contains the room must be the hotel
that ownsthe TV.

6.7.1.4 Uniqueness constraint

A uniqueness constraint is one of the “unnamed” constraints built into the IDEF1X modeling semantics and

syntax.

In a diagram, a uniqueness constraint for a class is specified by using the suffix uniqueness

constraint N (ucN), where“N” isa positive integer. This annotation appearsinthe Suf fixCommal. -
ist of each property that is subject to the“Nth” uniqueness constraint declared for the class. This constraint
isillustrated in Figure 71.84

In this example, the dependent classes and uniqueness constraints preserve the business rules that are stated
using primary keysin asimilar key-style model (see aso 9.7 and 9.9). Some of these rules are:

a)

b)

0)

d)

The business intends each hotel to have a hotelId and does not want two hotels to have the
samehotelId. Thisruleisspecified by the ( ucl ) suffixonhotelIdinhotel.

A room means aroom-numbered room in a specific hotel. This excludes hallway linen closets or
a bedroom within a suite. Each hotel assigns its own room numbers. No two rooms in a given
hotel may have the same number. This is specified by the ( ucl ) suffix on hotel and room-
Number in room.

What is relevant to the business is the fact that television sets are owned by a hotel, not the physical
television sets per se. If one hotel sells off atelevision set and another hotel happensto buy it, no one
cares. Furthermore, the second hotel will assign its own tvNumber. This is specified by the
( ucl ) suffixonhotel and tvNumber in tv.

A TV may be used in many rooms of the hotel (over time), and aroom may use many TVs. A record
of the usage hours for each TV isto be kept by room.

6450 Footnote 63.
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hotel

hotelld (ucl)

contains owns
room tv
hotel (ucl) hotel (ucl )
roomNumber (ucl ) tvNumber (ucl )
tviInARoom

room (ucl)

tv (ucl)

hoursUsed

Figure 71—Uniqueness constraints

A uniqueness constraint may include multiple propertiesin its declaration, and these properties may include
amixture of property types, i.e., attributes and participant properties. For example, the constraint expressed
in room includes an attribute (roomNumber) and a participant property (hotel). The constraint
expressed in tvInARoom isformed entirely over participant properties.

6.7.1.5 Value class uniqueness constraint

Uniqueness constraints are used with value classes to specify an instance (see Figure 72). For example, the
specification language statement

T is temperature with fahrenheit: 32

saysthat T istheinstance of temperature that hasa fahrenheit value of 32. Likewise, the specifica
tion language statement

V is vector with ( x: 1, y: 2, z: 3 )

says that v is the instance of vector that has the specified coordinate values. The properties used in an
associative literal can be the properties of any uniqueness constraint on the value class, regardless of repre-
sentation. The representation of the specified instance is established according to the specification language
for the realization for the uniqueness constraint.

For avalue class, each uniqueness constraint must have a realization specified, where the name of the prop-
erty is, for example, ucl, uc2, etc. Arguments are positional, as in any realization. All uniqueness con-
straint realizations for value classes are private. Thus, the position of the arguments in the signature may be
changed without disturbing message senders outside the class. (See also Clause 7.)

6.7.1.6 Instance value constraint
A value class can have instance value congtraints. In Figure 72, i sRectilinear is an instance value con-

dgtraint on rectilinearVector. Aninstance value constraint is true if the instance adheres to some con-
straint on the instance. In this case, the constraint is that the vector be rectilinear. Instance value constraint
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vector temperature

/x: real (ucl) N\

y:real (ucl)

z:real (ucl)

magnitude: real (uc2)
direction: real (uc2, o)

plus: [ V1: vector (i), V2: vector ]
dot: [ V1: vector (i), P: real | A
timesScalar: [ S: real (i), V2: vector |

rectilinearVector
(isRectilinear j
N

i

fahrenheit: real (ucl)
celsius: real (uc2)
kelvin: real (uc3)
isNotBelowAbsoluteZero

\

Figure 72—Value Class uniqueness constraints

checking is part of the semantics of specification of avalue classinstance by a uniqueness constraint. While an
instance of a classis being established, the instance value constraints for the class are checked. If any are not
true, the attempt to establish the instance fails. This applies recursively up the generalization hierarchy.

6.7.2 Constraint syntax
6.7.2.1 Signature
a) Thesignature of aconstraint shall consist of the constraint name.

b) Inadiagram, the constraint signature may be shown as an annotated constraint signature (the sigha
ture with additional keyword annotations), inside the class rectangle.

c) Thegeneral form of an annotated constraint signature shall be

Visibility ( PrefixCommaList ) ConstraintName ( SuffixCommalList )

d) With the exception of the ConstraintName, each of the elements of the annotated constraint sig-
nature shall be optional.

e) Each of the keywordsin the constraint signature may be abbreviated as explained in 6.3.2.9, so long
as no ambiguity results. Specifically,

( class, constraint )
may be abbreviated as

(cl, co ).
6.7.2.2 Visibility annotation
a) Thevisibility of a constraint may be restricted as protected or private using this standard visibility

annotation at the beginning of the constraint signature (see 6.3.2.2).
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6.7.2.3 PrefixCommalist clause

a) A classlevel constraint shall be marked by the keyword class in parentheses preceding the con-
straint name as part of the PrefixCommaList, asshown in Figure 73.

Visibility (7( Prefixcomn@\ConstraintName ( SuffixCommalList )

(class, constraint)

( constraint )

Figure 73—Constraint PrefixCommaList

b) If “class” isnot specified, the constraint shall be an instance-level constraint.
c) A congtraint shall be marked by the keyword constraint in parentheses preceding the constraint
name as part of the PrefixCommaList (Figure 73). Thisisillustrated in Figures 69 and 70.
d) Multiple PrefixCommaListsshall beequivaenttoasingle PrefixCommalist with the key-
words separated with commas. For example, (class) (constraint) is equivaent to
(class, constraint).
6.7.2.4 SuffixCommalList clause
a) Thefollowing shal be the only keyword option that is valid in the Suf fixCommaList of acon-
straint:
subclass responsibility
b) By definition, acongtraint shal dwaysbetotal, constant, read-only,and single-valued.
6.7.3 Constraint rules
6.7.3.1 Responsible class

a) A named constraint shall be specified as aresponsibility of one of the classes that isreferred toinits
description text. (That class is considered responsible for knowing if the constraint is satisfied.)

6.7.3.2 Naming/signature
a) A constraint of agiven signature may appear in more than one classin aview.
b)  No two constraints with the same signature may appear in the same class.
¢) A constraint and a property with the same signature may not appear in the same class.
A more complete explanation of the signature uniqueness requirementsis givenin 7.5.3.
6.7.4 Constraint requests
6.7.4.1 Constraint checking
a) A request may be made for the truth of aconstraint.° A request isissued by one instance to another
instance and shall be the only way to test a constraint.

b) Theform of arequest for aconstraint shall be that for a request with no arguments (see 6.2.2.6).

85kor example, a constraint check might be made in a post-condition. See also the discussion of constraint checking in 7.10.
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For example, (referring to Figure 69) if CA is an instance of checkingAccount, then the com-
mon owner constraint for CA may be checked by the request
CA has commonOwner.
¢) Therequest shall be true if the commonOwner constraint is satisfied for C2,; the request shall be
faseif itisnot satisfied.

d) A congtraint is a predicate—i.e., something that may be true or false—with the requirement that the
predicate be true for every instance of the class. For example, the truth of the commonOwner con-
straint may be checked for every instance of checkingAccount by the sentence:

forall ( #checkingAccount has instance(s)..member: CA ):
CA has commonOwner ).
This sentence can be read “for every checkingAccount instance, CA, the commonOwner con-
straint is true for CA” or, in a more natural fashion, “every checking account satisfies the common
owner constraint.” The sentence is false if for any instance CA the commonOwner constraint is not
true.

6.7.5 Constraint realization
6.7.5.1 Named constraint
a) Theredlization of a named constraint shall be stated using the specification language (see Clause 7)

in the form given for property realization with no arguments (see 6.3.4).

For example, thebalanceUnderLimit constraint in Figure 69 has the realization shown in Fig-
ure 74.

creditCardAccount: TheCreditCardAccount has balanceUnderLimit ifg.¢
TheCreditCardAccount. .balance < TheCreditCardAccount..limit.

Figure 74—Realization of balanceUnderLimit constraint

The natural language reading of this constraint is: “ The credit card account has a balance under its
limit if the credit card account’s balance is less than the credit card account’s limit.”

In this example, TheCreditCardAccount wasused instead of Self toillustrate another style.
Either isvalid. If the Se1f form had been used, the natural language reading would change to read:
“1 have a balance under my limit if my balance isless than my limit.”

The commonOwner constraint in Figure 69 has the realization shown in Figure 75.

checkingAccount: TheCheckingAccount has commonOwner if,.r
(if TheCreditCardAccount has protector: TheCheckingAccount
then
TheCheckingAccount. .owner == TheCreditCardAccount..owner
endif) .

Figure 75—Realization of commonOwner constraint

The natural language reading of this constraint is: “A checking account has a common owner if a
credit card account is the checking account’s protector and the checking account’s owner is the
credit card account’s owner.”
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The common ancestor constraint shown in Figure 70 is stated in Figure 76.

tvInARooOm:
Self..room. .hotel

Self has hotelOwnsTv if ¢
Self..tv..hotel.

Figure 76—Realization of hotelOwnsTv constraint

The natural language reading of this constraint is: “A tv in aroom has valid hotel ownership if the
hotel that contains the room of thistv and the hotel that owns the tv are precisely the same hotel

6.7.5.2 State class uniqueness constraint

a) A unigueness constraint may have no user-defined realization for a state class—i.e., the redlization

of a state class uniqueness constraint is built-in to the language.
6.7.5.3 Value class uniqueness constraint

a)
b)

A realization shall be written for a value class uniqueness constraint.

Value class uniqueness constraints shall be realized using the specification language. Figure 77
shows the constraint realizations for the uniqueness constraints in the temperature value class
that is shown in Figure 72. The pattern is the samein each case:

1) Map theinput argument to a kelvin value (the chosen representation), and
2) Say that the representation kelvin value agrees.
temperature: Self has uel: [ F ] ifg.¢
K is 273.16 + ( F - 32 ) * 5/9,
Self has kelvin: K.
temperature: Self has ue2: [ C ] 1ifg.s
K is 273.16 + C,
Self has kelvin: K.
temperature: Self has ue3: [ K ] ifg.r
Self has kelvin: K.

Figure 77—Realization of temperature value class uniqueness constraints

6.7.5.4 Instance value constraint
a)  Uniqueness constraints are used to establish an instance of avalue class.

Instance value constraints ensure that an instanceisvalid. Inthe temperature class, it isrequired
that the ke 1vin value be nonnegative. The realization of thisinstance value constraint is:
temperature: Self has isNotBelowAbsoluteZero if . ¢

Self..kelvin >= 0.
It is part of the semantics of instance specification to check the instance rules, so the specification
language statement

T is temperature with celsius:
isfalseand T has no value.
Instance value constraints shall be realized using the specification language.

-300

b)

120 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

Figure 78 shows the constraint realizations for the vector value classthat is shown in Figure 72.

vector: Self has uel: [ X, Y, Z ] ifg.¢
Self has x: X,
Self has y: Y,
Self has z: Z.

vector: Self has ue2: [ M, D ] ifger

D..cosineVector has timeScalar: [ M, V ],
X is V..x,
Y is V..y,
Z is V..z,

Self has x: X,
Self has y: Y,
Self has z: Z.

Figure 78—Realization of vector value class constraints

6.8 Note
A noteisabody of freetext that describes some general comment or specific constraint. A note may

— Beusedinan early, high-level view prior to capturing constraints in the specification language;
— Further clarify arule by providing explanations and examples;
— Beused for “genera interest” comments not involving rules.

These notes may accompany the view graphics.
6.8.1 Note semantics
Notes can be used in avariety of ways, for example,

a) Tomakeageneral statement about something during the early stages of analysis that would become
more formalized as a constraint in the specification language. For example, a common ancestor con-
straint that could be stated using RCL might initially be stated informally in a note. Similarly, an
“exclusive OR” constraint might state for an instance of a given parent class, that, if an instance of
one child class exists, then an instance of a second child class will not exist.

b) To record a preliminary understanding of some constraint that may be refined using the graphical
syntax, e.g., annotating a generalized “many” cardinality constraint.

c¢) Todescribe circumstances in which an attribute with a value assertion specified in RCL can have no
value.

A note is associated with the impacted view component, i.e., class, responsibility, relationship, or view. It
may apply to a single component or to several.

6.8.2 Note syntax
6.8.2.1 Note body
a) A noteshall contain a note body that consists of ablock of free text.

b)  When anote body is presented on adiagram or other display medium, whitespace (spaces, tabs, etc.)
shall be used to separate the note text from the note identifier.
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6.8.2.2 Note Identifier

a)
b)
<)

d)

e)

f)

A note shall contain a note identifier that is a nonzero, unsigned integer.

A note identifier shall be presented enclosed within parentheses.

When anote is attached to arelationship cardinality dot, the note identifier shall be placed either

1) Following the cardinality annotation symbol (the P, z, etc.), if thereisone, or

2) Directly following the dot, if thereis no cardinality annotation symbol.

When multiple notes apply to the same component, one of two display forms shall be used:

1) Each note identifier shall be enclosed within parentheses, or

2) All noteidentifiers, separated by commas, shall be enclosed within asingle set of parentheses.
When attaching a note to arelationship cardinality annotation (the dot or the symbol placed with the
dot), the note identifier shall be placed either

1) Following the cardinality annotation symboal, if there is one, or

2) Inplace of the symboal, if thereis none.

A noteidentifier that appliesto one of the elements of arelationship label (verb phrase or role name)
shall follow the element to which it applies.®

Figure 79 shows a two-direction relationship label with participant role names, with notes for each
of the elements.

customer

P 4. 'owner' is the person designated as the
(owner) (4) legal owner of the account for tax
s owned purposes.

by (4) owns (4) 7. 'ledger' is the preferred name by the user area.

(ledger) (7)

account

Figure 79—Relationship label with notes

6.8.3 Note rules

6.8.3.1 Note body

a)

A note shall be either

1) Generd innature, or

2) Documenting a specific constraint.

The note body may be displayable on aview diagram.

Note text may include any character symbol.

All note body characters, including text spacing and formatting, shall be significant and shall be pre-
served.

The same text shall apply to the same note number when that note number is used multiple timesin
aview.

66T here is no confusion between the note annotations and the role names since role names may not begin with an integer.

122
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6.8.3.2 Note identifier

a) A noteidentifier shall be unique within aview.
b) A note may be attached to the following:
1) Thelabel of any model component—e.g., class label, view label, responsibility label, relation-
ship verb phrase
2) Thecardinality annotation symbol
3) The cardinality annotation
c¢) A note may not be attached to a note identifier or to a note body.

7. Rule and constraint language

7.1 Introduction

The Rule and Constraint Language (RCL) complements the graphic constructs of IDEF1X ;. RCL isused to
specify the realizations of responsibilities and to express queries and updates against models. The combina-
tion of graphics and RCL allows the modeler to represent and reason about the subject under study to what-
ever level of specificity the modeler decidesis appropriate.

The overall goal of RCL isto combine the clarity of logical specifications—that is, specifications based on
logic—with the abstractions of the object model and to do so in a way that is tightly integrated with the
graphic constructs and directly executable. Logic and objects are combined by treating an object message as
alogical proposition. Object interfaces are stated using the graphic constructs. The responsibility realiza-
tions are stated using RCL. The names used in the RCL are the names appearing in the graphics.

Redlizations are logical sentences formed by connecting message propositions with logical connectives such as
and, or, not, and if then. Read declaratively, a sentence states what must be true about a solution, without regard
to how the solution is found. Read procedurally, a sentence states what must be done to obtain a solution.

RCL includes

a) Direct support for the modeling constructs of IDEF1Xg;

b) A single language for pre-conditions, post-conditions, assertions, queries, updates, and realizations
for attributes, participants, operations, and constraints

¢) Alogical, declarative reading as well as a procedura one

d) Two-valued logic—no nulls

e) A distinction between mutable and immutable objects

f)  Flexible typing ranging from untyped to statically typed

g) Property overriding for substitution or speciaization

h)  Dynamic binding based on argument dynamic types

i)  Direct execution

7.1.1 Objects and classes

An object isadiscrete thing, distinct from all other objects. Each object has an intrinsic, immutable identity,
independent of its property values and classification.

Every object is classified into one or more classes. An object is an instance of each classinto whichitisclas-
sified. The set of objects classified into a classis the extent of the class.

Classes are defined within views.
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There are two kinds of classes: state classes and value classes. A state class has atime-varying extent and the
objects in the extent have time-varying property values. A value class has a fixed extent, and the objects in
the extent have fixed property values.

7.1.2 Generalization
Generalization is concerned with the definition of objects.

Thereisasingletop class, called object. Every other class has one or more direct superclasses. The mean-
ing isthat an object that is an instance of aclassis also an instance of each superclass. A superclass of aclass
isadirect superclass or a superclass of a direct superclass.

A subclassis said to be lower that its superclass. If an object is an instance of aclass C and not an instance of
any subclass of C, then C isalowclass of the object.

A subclass inherits the responsibilities of its superclasses. A subclass may have additional responsibilities
beyond those of its superclasses or may override one or more of the responsibilities of the superclasses.

A property P’ of aclassC’ that overrides a property P of asuperclass C may do so in one of two ways: asa
substitution for P or as a speciaization of p. If P’ substitutes for P, then P’ is used for every message to
instances of C’ that would use P if the message wereto an instance of C. If P’ specializes P, then P’ isused
for some messages to instances of C’ and P is used for other messages to instance of C’, depending on the
(dynamic types of the) argument values in the message.

Whether P’ isasubstitute or specialization is a matter of intent. It is up to the modeler to choose whichever
best models the “real world” under study. Once the choice is made, the rules regarding the typing of argu-
ments are used to carry out that intent.

7.1.2.1 Multiple clusters

State and value classes may have multiple clusters of subclasses. The classes within a cluster are pairwise
mutually exclusive, meaning that no object is an instance of two classes in the cluster. Two classes in differ-
ent clusters are not necessarily mutually exclusive. Two classes are mutually exclusiveif they arein the same
cluster or a superclass of either is mutually exclusive with a superclass of the other. No class may have two
superclasses that are mutually exclusive with one another.

Two classes are parallel if neither is a superclass of the other and they are not mutually exclusive. Parallel
classes may occur only with multiple clusters.

A cluster is atotal cluster if every instance of the superclass is an instance of one of the subclasses in the
cluster, otherwiseit isapartial cluster.

A class is abstract with respect to a cluster if the cluster is total. A class is abstract if it is abstract with
respect to at least one cluster.

Parallel value classes must be abstract and every pair of parallel value classes must have acommon subclass.
The result of these rules is that a value class instance always has exactly one lowclass, but a state class

instance may have multiple lowclasses.
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7.1.3 Collection and pair classes

Where T isatype, thevalue classes set (T), 1ist (T),bag (T),and pair (T4, T,) provide parametric
polymorphism. They are polymorphic on the type of the elements, T, but T is used only to specify the types
of property arguments. The computations within the realizations do not depend on the specific value of T.

7.1.3.1 Collection classes

Where T isaclass, aset (T), 1ist (T), or bag (T) isacollection class. Examples include the classes
set (integer) and 1ist (bag (real) ). Each instance of a collection classis a collection. For exam-
ple, the set with elements 1, 2, 3isavaidinstance of set (integer), but the set with elements 4,
“abc”, 1.7 isnot. Both arevalid instances of the collection class set (object).

7.1.3.2 Pair class

Where T, and T, are classes, a pair( T4, T, ) is a pair class. Examples include the classes
pair (integer, integer) andpair( list(bag(real)), integer ). Eachinstanceof a
pair class is a pair. For example, the pair with left side *‘big’ and right side 8 is a valid instance of
pair (identifier, integer).ltisasoavalidinstanceof theclasspair (object, object).

7.1.4 Responsibility

An object has a set of responsibilities, and all objects in a class have the same kind of responsibilities. A
responsibility is a property or a constraint. A property is an attribute, a participant property arising from a
relationship, or an operation. An attribute is a mapping from a class to avalue class. A participant property
isamapping from a state class to a state class. Both state classes and value classes may have operations and
constraints. A responsibility has a name and zero or more arguments. An attribute has one argument—a
value of the attribute. A participant property has one argument—the identity of arelated object. An operation
has zero or more arguments. A constraint has no arguments.

A responsibility is arelational mapping from the cross product of the extents of the classes of the receiver
and the input arguments to the cross product of the extents of the classes of the output arguments. The map-
ping may be total or partial, single-valued or multi-valued, and with or without side effects. Alternatively, a
responsibility is arelation—a subset of the cross product of the receiver’s extent and the argument’s extents.
The responsibility maps a particular receiver object and input argument values to particular output argument
values if those particular values are a member (tuple) of the relation. For a value class, the relation is fixed.
For a state class, the relation is time varying.

7.2 Realization

a) Eachresponsihility isrealized by
1) Stored valuesfor thetuple, or
2) A computation. The computation states the necessary and sufficient conditionsthat atuple bein
therelation.
b) TheRCL relevant to realizationsis reproduced below. See 7.15 for the complete RCL syntax and an
explanation of the notation used to present the syntax.
1) RealizationRCL - Head ifg.¢ Body.
2) Head = class gname : Variable has ResponsibilityName{
PropertyOperator Arguments }
3) Body > { pre Sentence, } * Sentence { , post Sentence }*
4) ResponsibilityName > Identifier or Identifier( s )
5) PropertyOperator = : OF := Of :!= OF :4+= Of :-=
6) Arguments > Argument Of [Argument { , Argument }* ]
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0)

d)

f)
0)

h)

i)
)

k)

7) Argument > Variable { : TypeLiteral }
8) Typeliteral -

any
or bot

or Variable

Oor class_gname

or parametricVClass gname (TypelLiteral {, TypelLiteral }* )
The built-in parametric value classes are set (T), list (T), bag(T), pair (T1,T2), and
accumulator (T).
The variablesin a multiargument property are aligned by position with the interface specifica-
tion for the property.
If the interface specifies a valueName for an argument, then the variable shal be the same as
the valueName. For example, from Figure 44, the vector classoperation

(operation) plus: [ V1: vector (input), V2: vector ]
would have arealization
vector: Self has plus: [ V1, V2 ] ifg.¢ ..

Thepre and post clauses are explained in 7.10.2.

The Sentence is the computation that derives the output variable values from the identity of the

receiver and the input values.

1) Thesentence isalogical sentence. It evaluatesto true or false.

2) Thesentence specifies how the receiver and inputs are related to the outputs.

3) If what the sentence says is true for some particular receiver and inputs, then they do map to
some particular outputs. If it isfalse, they do not.

If aSentence evaluates to true, then it shall determine a value for each output variable. If it does

not, an exception shall be raised.

All variables are local to arealization (aquery); there are no global variables.
Attributes and participant properties have default realizations for
1) propertyName : Variable

2) propertyName := Variable
3) propertyName :!= Variable if optional
4) propertyName :-= Variable if multi-valued or collection-valued

5) propertyName :+= Variable if multi-valued or collection-valued
Attributes and participant properties are not instance variables, they are methods that operate on
completely hidden instance variables. The defaults may be overridden by supplying arealization in
RCL.
A property name may be an operator such as “+,” which enables

X is “let’s” + “do” + “it”
to be written.

7.2.1Value class uniqueness constraints

a)
b)

0)

d)

126

For each uniqueness constraint, a value class has a responsibility named uc1, uc2, or (in general)
ucN, where N is the uniqueness constraint number.
The arguments are positional, in the order the uniqueness properties are specified for the class.
Intherealization, the Sentence shall determine the value v for each representation property p and
send the message

Self has P: V.
If the uniqueness properties are multi-valued, one of the eguivalent values shall be consistently used
as the representation property value in order for equality to function properly. For example, aratio-
nal number value class may use numerator and denominator asthe representation properties
and the uniqueness constraint properties. Therational number 1/2 isthesameas2/4 or3/60r 4/
8, etc. The obvious value to use as representation is the reduced fraction.
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7.2.2 Overriding built-ins

a) Any of the built-in class responsibilities may be overridden, including new, init, create,
delete, €c
b)  Any of the default property operators may be overridden.
1) Typicaly, a message to invoke the default (a message to super) is done in the overriding
method.
2) The message for the default for each property operator is given in Table 11.

Table 10—Messages for default properties

PropertyHead Message for default property
Cn: Self has P : V Self super has P : V
Cn: Self has P :=V Self super has P :=V
Cn: Self has P :!=V | Self super has P :!=V

Cn: Self has P :4= V | gelf super has P :+= V

Cn: Self has P :-=V | gelf super has P :-= V

7.3 Message

a) A reguest to an object for one of its responsibilitiesis called a message. A message consists of
1) Theidentity of the receiver,
2) Thename of aresponsibility, and
3) Optionaly
i) A property operator,
ii) Thevalues of the input arguments, and
iii) the (typically unknown) values (typically as variables) of the output arguments for the
responsibility.
If aresponsibility is viewed as a mapping, a message applies the mapping to the receiver and input
values to yield the output values. Viewing a responsibility as a relation, a message is a proposition
that istrue if the tuple consisting of the receiver and argument values occur as arow in the relation,
and false otherwise.
b) Thesyntax of amessageis
Object { super } Having { PathExpr } ResponsibilityValue
where
1) PathExpr = { PropertyExpr { : SimpleObject } .. }+
2) PropertyExpr =
ResponsibilityName var
or PropertyNameSingular (Objects)
3) Objects > Object { , Object }*
4) ResponsibilityValue -
ResponsibilityName var { PropertyOperator SimpleObject }
Oor ResponsibilityOid { : SimpleObject }
or PropertyNameSingular ( Objects )
5) ResponsibilityName -> Identifier or Identifier( s )

6) PropertyNameSingular > Identifier
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d)

e)

7) ResponsibilityOid -> Variable
8) Object -2
SimpleObject
or Literal
or Object.. { PathExpr } PropertyExpr
or UnaryOp Object
or Object BinaryOp Object
or Object where Sentence
9) SimpleObject >
Variable
or String
or Identifier
or Number
or #Constant
or true
or false
or SimpleObject : SimpleObject
or SimpleObjectList
or {}
10) SimpleObjectList =
[{SimpleObject { , SimpleObject }* } ]
or [ SimpleObject | SimpleObjectList var ]

A path expression is a series of properties, Property;.. Property,.., .., .. Property,
forwhich n >= 0.

The message

Object has Property,;.. Property,.., .., .. Property,..Responsibility

is defined to be equivalent to the conjunction

Object has Property;: Vq,
V,; has Property,: V,,

V,-1 has Property,:,

V, has Responsibility
wherethevariablesv,, V,, .. V,do not otherwise occur within the query or realization.
1) If any property hasinput arguments, they may be specified by Property; (Args).
2) If there are N arguments, the first N-1 should be specified; the last is assumed to be the output,
An Object is a state class instance or value class instance. Syntactically, an Object may be a
variable. If the receiver or an input argument is a variable, it shall have a value when the message is
sent.
TheResponsibility0id shal bearesponsibility instance. Thisform directly invokes the real-
ization for the responsibility. Inheritance is bypassed. The pre-condition, post-condition, total, func-
tion, and read-only constraints are checked.

7.3.1 Message to a class

a)

b)

128

A message may be sent to a class or to an instance of a class. Syntactically, a message is to a class

when the receiver is of the form #Cn where Cn isthe name of aclass.

In aclass-level redization, Self isbound to the receiver class, so

1) A messageto Self isamessage to the receiver class, and

2) A messageto Self super iSamessage to asuperclass of the classin which the redlization is
defined.
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7.3.2 Creating a new state class instance

a) A new state classinstance is created by the message
#Cn has new: I
where Cn is a state class name and I is the identity of the new instance.
b) Aninstance may beinitialized by

I has init: [ Pl: V1, P2: V2, .., Pn: Vn ]
where each P1 isadirect or inherited property of I. Theresult isthat a
I has Pi := Vi

isdonefori = 1 to n.
¢) Thefunctionsof new and init are combined inthe create method:
#Cn has create: [ Pl: V1, P2: V2, .., Pn: Vn ]
This message is equivalent to
#Cn has new: I,
I has init: [ P1l: V1, P2: V2, .., Pn: Vn ].
d) Theidentity of the created instance may be specified by alast argument,
#Cn has create: [ P1l: V1, P2: V2, .., Pn: Vn, I ]
which equates the oid of the new instanceto T.
e) If I = #Constant whenthe create isissued, then I shall be the oid of the created instance so
long as it does not duplicate any prior oid.

7.3.3 Deleting a state class instance

a) A state classinstance is deleted by the message
I has delete
where T istheidentity of the instance to be deleted.

7.3.4 Displaying an instance

a) Aninstanceisdisplayed by the message
I has display

where T istheidentity of the instance to be displayed.
b) For astate classinstance, the display includes

1) Anexternd identity (#Constant),

2) Thename of the lowclass(es), and

3) Property name value pairs for al nonderived attributes and participant properties, including

inherited properties.

c¢) Foravalueclassinstance, the display includes

1) Thename of thelowclass, and

2) Property name value pairsfor all the nonderived attributes.
d) If thedisplay is graphical, the format shall be that of the instance diagrams or instance tables.
e) Theformat of nongraphical displays isimplementation-dependent.

7.3.5 Boolean attribute
a) A boolean attribute p of an Object isset true by amessage
Object has p:= true.
b) A boolean attribute p of an Object isset fase by amessage
Object has p:= false.

7.3.6 Changing the class of a state class instance

a) Aninstance of a state class may be removed from the extent of a class or added to the extent of a
class, so long as doing so is consistent with the generalization hierarchy (see Figure 18).
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b)  When aninstance is removed from the extent of a class, any relationships in which the instance par-
ticipants are updated as though the instance had been deleted—but only for that class.

7.3.6.1 Specialize

a) Anexistinginstance I may be added to a subclass Cn by the add method:
#Cn has add: [ Pl: V1, P2: V2, .., Pn: Vn, I ]
wherethe Pi: Vi are used to initialize the Cn properties.

7.3.6.2 Remove

a) Anexigting instance I may be removed from the extent of a class Cn by the unspecialize method
remove .
#Cn has remove: I

7.3.7 Specifying an existing instance
7.3.7.1 State class

a) Theequivalent propositions
I is Class( PropertyValue { , PropertyValue }* )
I is Class with ( PropertyValue { , PropertyValue }* )
Set I to the identity of an instance of the state class Class that has the specified property values.
b) The proposition is equivalent to the conjunction
Class has instance: I,
I has PropertyValue
{ , I has PropertyValue }*

7.3.7.2 Value class

a) Theequivalent propositions
I is Class( PropertyValue { , PropertyValue }* )
I is Class with ( PropertyValue { , PropertyValue }* )
set T to the identity of the instance of the value class Class that has the specified property values.
b)  The properties named shall constitute a uniqueness constraint for the value class.

7.4 Typing

Typing is concerned with the use of objects—not their definition. More specifically, typing is concerned with
when it is safe to send a message to an object or to pass an object as an input argument in a message, where
safe means without chance of a run-time error such as “ property not found.” More specifically yet, the key
guestion is when is it safe to use an object of one class when an object of another class is expected. The
notions of type and subtype are used to answer that question.

Objects have classes and variables have types. Every object has a lowclass. A variable may have a type
declared, which is the name of aclass or any. The type of a variable limits the objects that may be assigned
to the variable to just those objects that are instances of the class specified as the type. If the typeis any, then
any object may be assigned. When a variable is bound to an object, a lowclass of the object is sometimes
called a dynamic type of the variable. The declared type of the variable is called the static type.

Type checking means checking that variables are assigned only to objects that conform to the type declara-
tions. Type checking may be static (done on the source text of the RCL using the static types) or dynamic
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(done at run time using the lowclass of the objects as well as the static types). Either or both may be done
with RCL. Untyped, partially typed, or fully typed models may be executed.

7.4.1 Type and subtype

A classimplements atypeif it has all the responsibilities of the type. An object hastype T if the object isan
instance of a class that implements type T. Every class implements a type of the same name. Class #Cn
implements type Cn. A type T is a subtype of type T’ if T includes al the responsibilities of T’ . Unlike a
class, atype does not have instances. Subtype is not the same as subclass. Subclass implies subtype, but not
the other way round.

a) Every object has type any, the universal type. The universal type is used as an escape from type
checking for afully typed model.
b) Thekey idea of subtyping isthat of subsumption: if X hastype T and T isasubtypeof T’, then X
hastypeT’.
¢) Thenotation
T <: T/
meansthat T isasubtype of T’. Subtypeisreflexive and transitive.
d) ForadltypesT, T’
1) bot <: T
2) T <: any
3) T <: T’ €« #Tisasubclassof #T’
4) Cn(T1,T2,..Tn) <: Cn(Tl1l, T2',..,Tn’) €« Tl <: T1’ O T2 <: T2’.0 Tn
<: Tn’
where Cn isaparametric value class, such as set.
€)  With the definitions given, subsumption holds:
f) XhastypeT’ if XhastypeTand T <: T’.
0) Because<:isreflexive, every classis both a subtype and supertype of itself.
h) Because <: is transitive, every direct and indirect subclass of a classis a subtype of the class, and
every direct and indirect superclass of a classis a supertype of the class.
i)  ClassC,; may beused when class C, isexpected if C; <: C,.
j)  Thetypebot isimplemented by no class, so no instance ever has type bot. The lowclass of an
empty list, set, or bagis1ist (bot), set (bot), of bag (bot), respectively. The result is that,
for example, an empty set istype-acceptableto set (T) for any type T.

7.4.2 Dynamic type

a) Every object hasalowclass.

b) A state classinstance may have multiple lowclasses.

¢) A valueclassinstance always has exactly one lowclass.

d) A lowclass of an object is aso called a dynamic type of avariable bound to the object or an expres-
sion that evaluates to the object.

€) Thelowclass of acollection classis Cn (T) where T isthe least upper bound class of the types of
the members of the collection. For an empty collection, T = bot.

7.4.3 Static type
7.4.3.1 Variables
a) Variables (e.g., loca variables and arguments) may optionally have a declared type, also called a
static type.
b) If notypeisdeclared, the variable is untyped, meaning it has no static type.

¢) For anargument, the static type T, called the argument type, means that only values that have type T
are acceptable as values for that argument.
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d) Thetype of an argument is declared as part of the property signature.
e) Foralocal variable, the static type T, called the variable type, means that only values that have type
T are acceptable as values for that variable.
f)  Thetypeof avariableisdeclared by
Variable { : Typeliteral } is Object
or variable Variable { : TypelLiteral } { is Object }
g) Thestatictypeof Self istheclassfor which therealization is defined.

7.4.3.2 Literals

a) Thestatic typefor aninteger literal, suchas 7, isinteger.

b) Thedatictypefor areal literal, suchas3.14,isreal.

c) Thestatictypefor astring literal, suchas “hi”,isstring.

d) Thestatic typefor an identifier literal, such asho, isidentifier.

€) Thedtatic type of apair literal X: Yispair (Tx, Ty) if Tx isthestatictypeof X and Ty isthe
static type of v; otherwise, pair (any, any).

f)  Thesatictypeof alistliteral [ X where Proposition ]islist (T) whereT isthetype of X.
The gtatic type of thelist literal [ ] islist (bot). The static typeof thelist literal [ X1, X2,
.., Xn ]islist (T) whereT istheleast common supertype of the static typesof x1, x2, ..,
Xn if they all have a static type; otherwise, 1ist (any).

g) Thestatictypesof the set and bag literals are exactly analogous to those for the 1i st literals.

7.4.3.3 With
a) Thestatic type of

class name with ( PropertyValue { , PropertyValue }* )
isclass_name.

7.4.3.4 Casting

a)

b)

For any Object, the cast
Object as T
has static type
1) Tif Object hasno static type
2) TifObject hasstatictypeT,and T, <: Tor T <: T
3) None, and the static type check fails otherwise.
Casts affect only the static type, not the dynamic type.

S

7.4.4Typing rules for overrides

a)

The typing rules adopted for overrides have these objectives:

1) Allow type checking to avoid run-time errors

2) Allow overriding for substitution if substitution is the intent

3) Allow overriding for specialization if specialization isthe intent
4) Ensure overriding adheres to the substitution principle

7.4.4.1 Overriding

a)

132

A property P’ of aclassC’ that overrides a property P of a superclass C shall meet certain condi-
tions:

1) p’ shall have the same name as p.

2) P’ shdl have the same number of arguments as p.

3) P’ shal beread-only if P isread-only.

4) P’ shall be constant if P is constant.
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5) P’ shal beat least asvisibleas p.

6) P’ shal besingle-valued if P issingle-valued.

7) Forevery argumentA: T in P and corresponding argumentaA’ : T’ inP’,
T’ <: TorT <: T',and
i) If Aisan output argument, then T’ <: T.
ii) If A isnot updatable, then A’ shall not be updatable.

7.4.4.2 Overriding for substitution

a) If p’ substitutesfor P, then P’ isused for every messageto aninstance of C’ that would use P if the
same message were sent to an instance of C.
b) Two additional conditions shall be met:
1) Foreveryinputargument A: T in P and corresponding argument A’ : T’ in P’
i) A’ isaninput argument, and
i) T <: T'.
2) For every output argument 2 in P and corresponding argument A’ inp’,
i) A’ isanoutput argument.
The first condition is called the contravariance rule.

7.4.4.3 Overriding for specialization
If therules for overriding are met, but not those for specialization, then the result is overriding for specialization.

a) Forsomeinputargument A: T in P and corresponding argument2’ : T’ inP’,
1) A’ isaninput argument, and
2) T’ <: T,and
3) T/ !=T.
This condition is known as covariant specialization.

7.4.5 Determining the class of an object

a) Foranobject X,
X has lowClass: LC
istruefor any lowclass .C of x.
b) For an object %,
X has class: C
istruefor any class C of which X isan instance.

7.5 Dynamic binding

A message is dynamically bound to one class responsibility (i.e., one specific responsibility of one specific
class), binding the argument values in the message to the responsibility’s arguments and eval uating the body
of the responsibility’s realization.

A message consists of the identity of a receiver, aresponsibility name, and, optionally, a property operator;
values for the input arguments; and variables (typically, although values may be provided) for the output
arguments. The static text of the message may in general determine the static type of the receiver and argu-
ments; but, because of overriding and subtyping, al that can be known about their dynamic typesisthat the
dynamic type is a subtype of the static type. As aresult, the static text of the message in general determines
only aset of possible responsibilitiesto be used to resolve the message. The specific responsibility within the
set cannot be known until run-time, when the identity (and therefore dynamic type) of the receiver and input
arguments are known.
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M essage resol ution determines the one, specific realization to use. There are three aspects to message resol u-
tion:

a)  Sgnature matching—determining whether or not a given responsibility matches the message,
b)  Search order—the order in which responsibilities are considered for matching,

¢) Uniqueness—rules on responsibility definitions to guarantee that every message can be resolved to
at most one responsibility.

The signature matching choices revolve around the use of static or dynamic types for the message receiver
and arguments. Smalltalk uses the dynamic type of the receiver and does not use the types of the arguments
at al. C++ and Java use the dynamic type of the receiver and the static type of the arguments. CLOS uses the
dynamic types of the receiver (treated as just another argument) and the arguments.

The search order choices are concerned with, first, whether the receiver plays a dominant or equal role rela-
tive to the arguments; second, the relative order of search of instance-level responsibilities versus class-level
responsibilities versus metaclass responsihilities; and, third, the order in which multiple superclasses are
searched.

The choices on matching and search order largely determine the uniqueness rules needed.
7.5.1 Signature matching

The signature of aresponsibility consists of its name, property operator, and the number and type of itsargu-
ments.

a) Eachargument is either an input argument or not.

1) Thearguments arein afixed order, and the message argument values are assumed to be in the
proper order.

2) Aninput argument shall have avalue in order to invoke the responsibility.
3) Anoutput argument need not have avalue, but is permitted to have one.
b) A responsibility may be used for a message
1) If theresponsibility names are the same, and,
2) If there are arguments,
i)  The property operators are the same, and

ii)  For each input argument in the signature, the corresponding argument in the messageis a
value (not an uninstantiated variable), and

iii) The argument in the message has atype that is a subtype of the signature type.

€) The argument in the message has two types: static T, and dynamic T 4. The argument in the signa-
ture has just a static type T. Message resolution for RCL uses the dynamic type of the input argu-
ments, i.e., amatch requires Ty <: T.

This rule supports overriding for both substitution and specialization. The receiver till has the dom-
inant role because it is the dynamic type of the receiver that determines which classes to search. Itis
only among the properties of a class that the dynamic type of the input arguments are used. Thisis
called encapsulated multi-methods.

d) If morethan one property’s signature matches the message, the best match isused. If P and P’ both
match a message, then P isthe best match if P islessthan P’ according to

1) Explicit properties < implicit properties
2) Instance-level < class-level

3) c<c’ifcisadigtinct subclassof C’
4) T<TifT <: T/ andnot (T = T')
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7.5.2 Search order

Inheritance occurs from instance to instance, from class to instance, from class to class, and from metaclass
instance to class.

a) Thisis done by dternately using the steps 1 and 2 below, where step 1 searches instance-level
responsibilities, and step 2 searches class-level responsibilities.

1) If the message isto an instance of a class, the search begins with the instance-level responsibil-
ities of the lowclass(es) of the instance. If no match is found, the search for instance-level
responsibilities proceeds up toward the root (object). Any subclasses that need to be
searched are searched before the superclass. If no match is found after searching object, the
message is delegated to the lowclass, which requires step 2.

2) If themessageisto aclass, the search begins with the class-level responsibilities of the class. If
no match is found, the search for class-level responsibilities proceeds up toward the root
(object). Any subclasses that need to be searched are searched before the superclass. If no
match isfound after searching object, the message is delegated to the class as an instance. (It
isan instance of ametaclass.) In this message, the receiver is an instance, which requires step 1.

b) The receiver of a message may be an instance of a class or a class itself. A message is sent to an
instance for instance-level responsibilities and to a class for class-level responsibilities.
c) If thereceiver isan instance, the search beginswith step 1. If the receiver is aclass, the search begins

with step 2.

d) The search ends when amatch is found or when the next class to search for instance responsibilities
has already been searched, in which case a“responsibility not found” exception is raised.

7.5.3 Uniqueness
The unigueness conditions guarantee that a message can be resolved to at most one class responsibility.

a) Two signatures that agree on al but possibly type overlap if it is possible for a message to match
both. Signatures P and P’ overlap if
1) Thenames are the same, and
2) Thenumber of arguments are the same, and
3) For every argument A with type T of P and corresponding argument 2’ with type T’ of p’,
if A isaninput argument or A’ isan input argument,
then T and T’ are not mutually exclusive.
b) Signaturepislessthanp’ if
1) PpandP’ overlap, and
2) For every argument A with type T of P and corresponding argument A’ with type T’ of P’
if Aisaninput argument or A’ isan input argument,
thenT <: T'.
¢) A setof signaturesis unambiguous if
1) For every pair of distinct signatures P and P’ in the set of signatures,
if P overlapsp’
then
Plessthanp’, or
P’ lessthan p.
d) Theuniqueness conditions are as follows:
1) For every class, the signatures of the instance-level responsibilities shall be unambiguous, and
the signatures of the class-level responsibilities shall be unambiguous.
2) For every pair of parallel classes, the union of the signatures of the instance-level responsibili-
ties shall be unambiguous, and the union of the signatures of the class-level responsibilities
shall be unambiguous.
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7.5.4 Static type checking

Static type checking uses the same signature matching and search order, but with static types instead of
dynamic.

a)
b)

0)

Static type checking requires that identifiers, not variables, be used for all class names and property
names.

The search starts at the static type of the receiver. Each signature is tested for a match using the static
types of the message argument values and the static types of the property signature arguments.

If no static type was declared, no type check is done.

7.5.5 Message to super

a) A messageto super,
Self super has Responsibility
modifies the search order for message resol ution.
b) A messageto super may be used only within arealization.
C¢) Thesearch starts as though the search had failed at the class for which the realization is defined.
7.5.6 Visibility
a) Private responsibilities are accessible only by messagesto se1 £ from realizations of the class.
b) Protected responsibilities are accessible only by messagesto Self or Self super within asub-
class from realizations of the class or a subclass.
c) For private, the static type of Self shall be the same as the class of the responsibility.
d) For protected, the static type of Sel £ shall be a subtype of the class of the responsibility.

7.5.7 Read-only

a)

Within aread-only responsihility, no value of any instance may be changed.

7.5.8 Constant

a)

A constant responsibility gives the same result for the same input arguments, regardless of the values
of the instances.

7.6 Assignment

a)

e
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An assignment such as

V2 is V1
isaproposition that proposesthat V2 isthe same asv1. In the common case, V2 isan uninstantiated
variable and V1 isavalue. The solution to the proposition is to make v2 the same as V1, if the typ-
ing rules permit.
If v1 hastype T1 and V2 hastype T2, the proposition

V2 is V1
shall satisfy T1 <: T2.
If v1 and v2 areboth values, thenv2 is V1 istrueif vi == v2.
If v1 is uninstantiated, then v1 and v2 are equated. For dynamic (run time) type checking, any
assignment that causes a variable with type T to be assigned a value that does not have type T raises
an exception.
Assignment to variables (local variables, arguments, and Se1£) is nondestructive. If v2 already has
avalue, that value is not changed. In contrast, a message such as
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I has p:=V
does change the value of instance 1’s property p.

7.7 Propositions

A proposition istrue or false. If true, it may (and typically does) instantiate variables or, in other words, find
a solution for their unknown values. A solution is a set of values for the variables in the proposition that
makes the proposition true.

a) If the proposition isfalse, there is no solution and no variables are instantiated.
b) If aproposition is evaluated when al its variables are aready instantiated, then it shall be true if
those values are a solution; otherwise, false.
¢) Thesyntax of aproposition is as follows:
1) Proposition—>
true
or false
or Object { super } Having { PathExpr } ResponsibilityValue
or Object.. { PathExpr } ResponsibilityValue
or Object RelOp Object
or SimpleObject = SimpleObject
or variable Variable { : Typeliteral } { Being Object }
or Variable { : Typeliteral } Being Object
2) Having = has or had
3) Being > is oOr was
d) A hadorwas proposition may be used only within a post-condition.
7.7.1 Assert
@) Theproposition
assert Proposition
istrueif Proposition istrue.
b) Itisfdseif Proposition isfase, inwhich casean exception israised.
€) Anassert doesnot makethe Proposition true. It simply tests whether it istrue.
d) An assert isread-only; any updates done by the Proposition are backed out, whether the

assert succeedsor fails.

7.7.2 Negation

a)

A proposition such as

not Self has p: [ X, Y ]
istrueif

Self has p: [ X, Y ]
isfalse.

Thisis called negation asfailure. It is based on the closed world assumption: whatever istrue is known to be
true by the model, so anything not known to be true by the model shall be false.

Thistopic is covered more thoroughly in the formalization (see Clause 10).

7.7.3 Equality

The definitions of equality are based on the idea that for two things to be equal, they must be indistinguish-
ably substitutable one for the other in any context.
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a) Fortwo variables 11 and 12, each bound to a state class instance,
I1 == I2
if I1 and I2 are bound to the same instance.
b) Fortwo variables v1 and v2, each bound to avalue class instance,
V1l == V2
if they:
1) Have acommon superclass, and
2) Havethe samevaluefor all the properties of a uniqueness constraint.
c) X1 != X2
is defined as equivalent to
not ( X1 == X2 ).

7.7.4 Ordering comparisons

a)

b)

The proposition
Object RelOp Object
is defined based on the total ordering described in 7.12.
TheRe10p properties are properties of object and value in the metamodel and may be overridden.

7.8 Sentences

a)

The syntax for Sentence isasfollows:
1) Sentence =2
Proposition
or not Sentence
Oor Sentence, Sentence
Of Sentence or Sentence
or if Sentence then Sentence endif
or if Sentence then Sentence else Sentence endif
or forall Sentence : Sentence
or for Accumulator all Sentence : Sentence
Oor exists Sentence
or assert Sentence

7.8.1 Conjunction

a)

b)
<)
d)

A conjunction
P, Q
istrueif P istrueand Q istrue.
If P and Q have no side effects and raise no exceptions, then P, Q istrueif and only if 9, Pistrue.
If P or Q isfalse, then no side effects due to either shall occur.
If Q or P have side effects or raise exceptions, Q, P may give adifferent result.

7.8.2 Disjunction

a)

b)

138

A disiunction
P or QO
istrueif pistrueor Q istrue.
If P and O have no side effects and raise no exceptions, then P or QistrueifandonlyifQ or P
istrue.
If Q or P have side effects or raise exceptions, Q or P may give adifferent result.
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7.8.3 Implication

Animplication
if S1 then S2 endif
istrueif s1 isfaseor s2 istrue.
At most one solution is obtained for S1.
If thereisasolution, then s2 is evaluated with common variables bound to the values determined by
the solution.
If s1 infact has multiple solutions, some one of them is used and the others are ignored.
An RCL interpreter shall offer an option of raising an exception if the condition sentence has more
than one solution.

7.8.4 Conditional

a)

A conditional
if S1 then S2 else S3 endif
is equivalent to
if S1 then S2 endif, if not S1 then S3 endif

7.8.5 Bounded quantification

a)

b)

<)
d)

f)
0)

A bounded universal quantification
forall ( S1 ) : ( S2 )
istrueif, whenever S1 istrue, S2 istrue.
For each solution obtained for s1, S2 is evaluated with common variables bound (temporarily) to
the values determined by the solution.
1) If s2isfase thenthe forall isfase
2) If s2istrue, then
i)  Thenext solution for S1 is obtained, and
ii) S2isevauated with that solution.
This procedure continues until some solution of S1 causes S2 to be false, or there are no more solu-
tionsto S1.
If S1 hasno solutions, the forall istrue.
A forall never leaves any variables it temporarily instantiates bound to a value.
1) Attheconclusion of the forall, variablesin S1 or S2 have exactly the same value (no value)
asthey had beforethe forall was evaluated.
2) Attheconclusion of asuccessful forall, all side effects dueto S2 remain.
3) Slisnot permitted to have side effects; and, if any occur, an exception is raised.
A bounded existential quantification
exists ( S1 )
istrueif s1 istrue.
If S1 hasno solutions, theexists isfase.
Anexists never leaves any variables it temporarily instantiates bound to a value.
1) At the conclusion of the exists, variables in S1 have exactly the same value (no value) as
they had beforethe exists was evaluated.
2) Attheconclusion of asuccessful exists, all side effectsdueto S1 remain.

7.8.6 Bounded accumulation

a)

A bounded accumulation

for Accumulator all ( S1 ) : ( S2 )
isaforall that accumulatesresultsinthe Accumulator.
For example, to compute the Sum of the members of aList of integers,
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Acc is accumulator (initial: 0, final: Sum),
for Acc all (List has member: X):
( Acc..current is Acc..previous + X).

7.9 Type checking

Static type checking is done on the source text of the RCL using the declared, static types. Dynamic type
checking is done during model execution using dynamic types and possibly static types.

a)  Animplementation shall offer, but not require, static type checking for
1) Message resolution,
2) Assignment, and
3) Argument passing.

b) It shal be possible to execute a model even if static type checking is not done or it fails, in which
case dynamic type checking shall be done on assignment and argument passing.

c) Thecombination of static and dynamic type checking used to check for conformance to the declara-
tions of visibility, updatable, and constant is implementati on-dependent.

7.10 Constraint checking
7.10.1 Constraints

a) For aconstraint responsibility, the effective constraint is the conjunction of the constraint with all
overridden constraints of the same name.

b) A constraint may be checked
1) Explicitly by sending a message for it, or
2) Automatically using the options described under 7.10.3.

7.10.2 Pre-conditions and post-conditions

Pre-conditions and post-conditions are, in concept, part of the interface, not the realization, but syntactically
they are stated with the realization because they need access to argument values and the property values of
the receiver.

a) Thesyntax for pre-conditions and post-conditionsis as follows:
Body > { pre Sentence, } * Sentence { , post Sentence }*
b) Thepre-conditionis
1) Thedigunction of thepre Sentences, or
2) trueiftherearenopre Sentences.
¢) Thepost-conditionis
1) Theconjunction of thepost Sentences, or
2) trueiftherearenopost Sentences.
d) Inapost-condition, a message such as
I had P: V
or
V was I..P
1) Getstheold property values as they were before the body was evaluated.
2) May be used only within post-condition sentences.
€) The same results should be obtained when evaluating with pre-condition and post-condition check-
ing turned off or on (as long as no exceptions are raised). To this end, the following rules apply:
1) Pre andpost areread-only.
2) Novariableusedinthe Sentence may beusedinthepre or post Propositions except
Self and the arguments.

140 Copyright © 1999 IEEE. Al rights reserved.



IEEE

SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

f)

The pre-conditions and post-conditions stated for a property are combined with those of the proper-
tiesit overrides to form the effective pre-conditions and post-conditions.
1) A model may be evaluated with pre-condition and post-condition checking turned on or off.
i) If turned on and an effective pre-condition or effective post-condition is not met, an excep-
tionisraised.
ii) If theSent ence evaluatestof al se, the post-condition is not checked.
2) A total (mandatory) property shall succeed if its pre-condition is met.

7.10.3 Constraint checking options

a)

b)

An RCL interpreter shall offer the option of checking the following and raising an exception if the

constraint is not met:

1) A single-valued property has at most one value when the value is requested.

2) A mandatory property has avalue when the value is requested.

3) A collection valued property with a cardinality constraint shall satisfy the constraint when the
property value is requested.

4) A value classinstance specified by aliteral (including thewi t h form) meets all constraints.

These options are in addition to the type checking and pre-condition and post-condition checking

options.

7.11 Query

During the evaluation of amodel, query RCL is used by the modeler testing the model.

a)

b)

0)

d)
€)

The syntax for query RCL is:
QueryRCL => Sentence.
In query RCL, the Sentence may betrue or false.
1) If true, it solvesfor the values of the variables in the message.
2) There may be more than one solution.
In query RCL, the following are implementati on-dependent:
1) The manner of entering the query RCL,
2) Themanner of displaying whether a Sentence istrue or false, and
3) Thedisplay of the solutions.
Side effects due to the Sentence are discarded if the Sentence isfase.
Side effects due to atrue Sentence may be optionally retained in an implementation-dependent
manner.

7.12 Total ordering

a)

Variables and objects are totally ordered from low to high in the following way:

1) Variablesin an implementation-dependent order.

2) Real numbers from minus infinity to plusinfinity.

3) Integer numbers from minusinfinity to plusinfinity.

4) Identifiers and strings in an implementation-dependent order, subject to the following rules:

i) Theempty identifier or string precedes all nonempty.

ii) Uppercaseletters A through Z are in ascending order.

iii) Lowercase |etters athrough z are in ascending order.

iv) Digitsfrom O through 9 are in ascending order.

v) Anidentifier or string S1 precedes an identifier or string S2 if the first character of S1 is
less than the first character of S2, or the first characters are equal and the rest of S1 pre-
cedestherest of S2.

5) Listsand pairsin lexographic order.
i) A pair A:B precedesapair C: D if A precedes C, or A equals C and B precedes D.
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ii) Alist2aislessthan alist B if the first element of A precedes the first element of B or the
first elements are equal and the rest of 2 precedes the rest of B.
6) All other objects in an implementation-dependent order.
b)  Thisorder determines the result of comparing two objects (unless the Re 1 0ps are overridden).

7.13 Implementation-dependent

a)  Anything that is specified as implementation-dependent may be implemented in any way the imple-
menter seesfit.

7.13.1 Error conditions
a) Theaction taken by an RCL interpreter to “raise an exception” isimplementation-dependent.
7.13.2 Numeric characteristics

@  Minimum and maximum values, overflow, and so on are all implementation-dependent.

7.14 Lexical characteristics
7.14.1 Character set

a) Thefollowing definesthe RCL character set:
1) Digit = 0 through 9
2) Lowercase > a through z
3) Uppercase = A through Z or _
4) AlphaNumeric -> Uppercase Or Lowercase Of Digit
5) Variable > Uppercase { AlphaNumeric }*
6) Integer > { - }{ Digit }+
7) Real > Integer.{ Digit }+ { e Integer }
8) Whitespace > any of space tab newline return formfeed backspace
9) SpecialCharacterExceptQuote >
any of ' @ # $ & "~ & * () + | -=\N{}[1:;<>,.72/
10) CharacterExceptQuote =2
AlphaNumeric
or Whitespace
or SpecialCharacterExceptQuote
11) Character > CharacterExceptQuote or ' or ™
12) CharacterExceptDoubleQuote = CharacterExceptQuote of
13) CharacterExceptSingleQuote = CharacterExceptQuote or ™
14) sSsingleQuoteCode > ‘!
15) UnquotedIdentifier > Lowercase { AlphaNumeric }*
16) Identifier >
UnquotedIdentifier
or ' { CharacterExceptSingleQuote Or SingleQuoteCode }+
17) QualifiedName —> Identifier { : Identifier }*
18) Constant = Integer Of QualifiedName
19) DoubleQuoteCode > “”
20) String > “{ CharacterExceptDoubleQuote Of DoubleQuoteCode }* ™
21) PropertyOperator = : OF := Of :!= OF :4+= Of :—-=
22) UnaryOp > + Or -
23) BinaryOp = RelOp Or+ Or - or * or /ormod Of ** or *
24) RelOp = < OFr<= Or== Or>= 0Or> Of !=
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b) If xxx isan unquoted identifier, then xxx and *xxx’ areinterchangeable.
c)  Whitespace outside quotes serves only to separate tokens.

7.14.2 Comments

a Comments areinitiated by the characters

outside single or double quotes.
b)  The comment extendsto the end of theline.
¢) Comments are treated as whitespace.

7.15 RCL syntax

7.15.1 RCL syntax conventions

The syntax for RCL is given using a version of Backus-Naur form (BNF) in which a series of production
rules say how a nonterminal symbol produces other nonterminal or terminal symbols. All the legal terminal
symbol sequences in the language can be produced by starting with the top symbol (RCL) and applying a
series of production rules.

a) Anextended notation is used to simplify the grammar:

1) > is the produces symbol

2) or means aternative

3 (..} means the contents are optional

4H { .. }* means zero or more repetitions of the contents

5 { .. }+ means one or more repetitions of the contents

6) keyword isatermina of the language

7)  XXX_name is syntactically an identifier (denoting an xxx)

8) xxx_gname is syntactically a qualified name (denoting an xxx)

9) Xxxx_var is syntactically an xxx or avariable (bound to an xxx)
10) italics isan informal comment, such as through or any of

b)  Whitespace outside single or double quotes serves only to separate tokens.
c¢) Comments are treated as whitespace.

7.15.2 Operator priority and associativity

The priority and associativity of the operators in an expression determine the nonterminal symbol that pro-
duces the expression.

a)  All operators are
1) Prefix, for example, negation asin -7
2) Infix, for example, plusasin 3+4

b) All operators are
1) Left associative, for example, plusasin a+b+c, whichisequivalent to (a+b) +c
2) Right associative, for example, pair asina:b: c, whichisequivalenttoa: (b:c)
3) Nonassociative, for example, *!="asinxXx != 10 != 17, whichisinvalid.

c) All operators have a priority, from loose to tight. For example, *+ islooser than Y*7,s0 1+3*4 is
equivalentto 1+ (3*4).
Table 12 shows the operators from loose at the top to tight at the bottom. Operators on the same line
have the same priority.

d) Parentheses override the priority and associativity of the operators. For example, the grouping of
a..b:2..cas(a..b):(2..c) shal beoverriddenby a.. (b:2)..c.
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Table 11—Operator priority

prefix non prefix right infix left infix non infix right

or

not assert

as

with

*/ mod

**x A

7.15.3 BNF

a) TheBNFfor RCL follows:
1) RCL >
DeclarationRCL
or QueryRCL
or RealizationRCL
2) DeclarationRCL -
stateClass gname : OID has ResponsibilityName { : SimpleObject }.

3) 0Ip >
# OIDTerm
4) OIDTerm -
Constant
or Type

or { + or - } OIDTerm
or OIDTerm PropertyOperator OIDTerm
or [OIDTerm { , OIDTerm }* ]

5 Type >
Variable
or #class_gname
or #(class gname : [ Type { , Type }* 1 )

6) QueryRCL -> Sentence.
7) RealizationRCL => Head ifg.¢ Body.
8) Head -
class gname : Variable has ResponsibilityName {
PropertyOperator Arguments }
9) Body > { pre Sentence, } * Sentence { , post Sentence }*
10) Sentence -
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11)

12)
13)
14)

15)

16)

17)

18)

Proposition
or not Sentence
Oor Sentence, Sentence
Or Sentence or Sentence
or if Sentence then Sentence endif
or if Sentence then Sentence else Sentence endif
or forall Sentence : Sentence
or for Accumulator all Sentence : Sentence
or exists Sentence
or assert Sentence
Proposition =
true
or false
or Object { super } Having { PathExpr } ResponsibilityValue
or Object.. { PathExpr } ResponsibilityValue
or Object RelOp Object
or SimpleObject = SimpleObject
or variable Variable { : TypelLiteral } { Being Object }
or Variable { : Typeliteral } Being Object
Having = has or had
Being > is Or was

Object =
SimpleObject
or Literal
or Object.. { PathExpr } PropertyExpr
or UnaryOp Object
or Object BinaryOp Object
or Object where Sentence
or Object as Typeliteral
SimpleObject =2

Variable
or String
or Identifier
or Number
or #Constant
or true
or false
or SimpleObject : SimpleObject
or SimpleObjectlList
or {}
SimpleObjectList -
[{SimpleObject { , SimpleObject }* } ]
or [ SimpleObject | SimpleObjectlList var ]
Literal -
class gname var with ( ResponsibilityValue { ,
ResponsibilityValue }* )
or class gname( ResponsibilityValue { ,
ResponsibilityValue }* )
or CollectionName (Objects)
or [ Objects 1]
or [ Object | List ]
or { { Objects } }
or { Object | Set }
List = Object thatisalist
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19) Set =2 Object that is a set
20) PathExpr > { PropertyExpr { : SimpleObject } .. }+

21) PropertyExpr >
ResponsibilityName var
or PropertyNameSingular (Objects)
22) Objects > Object { , Object }*
23) ResponsibilityValue -2
ResponsibilityName var { PropertyOperator SimpleObject }
or ResponsibilityOid { : SimpleObject }
or PropertyNameSingular ( Objects )
24) ResponsibilityName -> Identifier or Identifier( s )
25) PropertyNameSingular > Identifier
26) ResponsibilityOid = Variable
27) Arguments = Argument OF [ Argument { , Argument }* ]
28) Argument > Variable { : TypeLiteral }
29) Accumulator = Object thatisanaccumulator
30) TypeLiteral ->
any
or bot
or class gname
or Variable
or class gname
Or parametricVClass gname (TypeLiteral {, TypelLiteral }* )

8. Model infrastructure constructs

The constructs described in other clauses can be utilized in different ways for different reasons. Among the
common reasons are to

a)  Understand and document the current scope and rules of some subject of interest,

b) Analyze and propose a potential scope and rules of an area of interest, and

c) Serve as a blueprint for an information system that supports or will support an area or subject of
interest.

Experience with key-style IDEF1X (Clause 9) and similar languages shows that certain documentation and
organization concepts span amost all of the uses of these constructs, much as, independent of the content of
the book, almost all books have atitle, an author name, and a date published. Additionally, aimost all books
are organized into chapters and have their pages numbered. In the same way that a common organizational
paradigm has emerged for books, so has one emerged for the constructs described in this standard.

This clause gives al practitioners acommon baseline from which to organize and document their work. Itis
limited to four key organizational concepts: view, environment, glossary, and model. This standard does not
prohibit the use of additional concepts to organize the constructs described in this standard. The following
topics are discussed in this clause to provide an infrastructure for modeling:

a) View: A view is composed of the language constructs documented in the earlier clauses. A view isa
collection of classes, relationships, responsibilities, properties, constraints, and notes (and possibly
other views), assembled or created for a certain purpose and covering a certain scope. A view may
cover the entire area being modeled or only a part of that area.

A view specifies the structuring and declarations of the classes it contains. The allocation of proper-
ties and constraints to classes, the taxonomy of classes, and the sentences for properties and con-
straints are specified only within views.

146 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg7 (IDEFpjecy) Std 1320.2-1998

Each view shall be of one style: identity style or key style. Identity-style model constructs are dis-
cussed in Clauses 5 and 6, and the identity-style view is described here (see 8.1). The key-style view
isdiscussed in Clause 9.

b) View Level: A view may have an identified level. Valid levels depend on the view style. View level
for identity styleis discussed in 8.2.5

¢) Environment: In IDEF1X, an environment is a concept space—an area in which a concept has an
agreed-to meaning and one or more names. Every view is developed for a specific environment. The
environment controls the scope of the view aswell as the names and properties given to its elements.
The constituent elements of a view can only be understood, used, and referred to within a frame of
reference. Environment provides that frame of reference (see 8.3).

d) Glossary: An environment is supported by an environment glossary, which is the collection of the
names and descriptions of all defined concepts (views, classes, relationships, responsibilities, prop-
erties and constraints) within that environment. The glossary describes the concepts that were speci-
fied in views. In other words, the glossary reflects the descriptions, or meanings, of the concepts but
it does not “contain” the concepts themselves. For example, it is the meaning of the customer
class that is in the glossary, but not the structuring and declarations of the customer class itself.
The principle motivation for the glossary is to ensure consistent semantics across al views in an
environment.

A model glossary is the collection of the names and descriptions of all defined concepts that appear
within the views of a model. Since a model may span environments, the scope and content of its
glossary are determined by the views contained in the model (see 8.4).

€) Model: An IDEF1X model consists of one or more views along with textual descriptions of the

views and view components (classes, properties, etc.) called out in the views (see 8.5).

8.1 View

A view isacollection of classes, relationships, responsihilities, properties, constraints, and notes (and possi-
bly other views), assembled or created for a certain purpose and covering a certain scope. A view may cover
the entire area being modeled or only a part of that area. Views are typically presented as graphic diagrams.
The notion of view is heeded because a classistoo small and amodel or environment can be too largeto rea-
son about effectively.

A view exists together with any number of other potentially overlapping views within a single environment
(see 8.3). An environment contains defined concepts shared across one or more views. A view may use an
existing description of a concept (class, property, etc.); it may also separately describe concepts as they
apply within the view (see 8.4).

Views emerge and change over time. A view may include concepts described in other views. One view may
be a subset of another view or it may be a composite formed from other views.

8.1.1 View semantics
8.1.1.1 Shadow class
A view provides the specification for the structuring of the constituent parts (classes) that make up the view.
The alocation of properties, relationships, and constraints to a class, the taxonomy of classes, the composi-

tion of contained views, and the sentences for properties and constraints are specified only within aview.

However, it is often desirable to depict a class in views other than the one in which it is specified. A class
presented in aview that is specified in some other view is referred to as a shadow classin that view.

57View level for key styleis discussed in 9.10.
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8.1.1.2 Subject domain

A view taken as awhole isreferred to as a subject domain. A subject domain is an area of interest or exper-
tise. The responsibilities of a subject domain are an aggregation of the responsibilities of a set of current or
potential named classes. A subject domain may also contain other subject domains. A subject domain encap-
sulates the detail of aview; there is a one-to-one correspondence between a subject domain and a view.

The use of subject domains alows a hierarchy of views to be formed, with increasing detail at each level.
When a subject domain appearsin aview, only the “outside” can be seen. When a subject domain appears as
aview, theinternal detail can be seen. This concept isillustrated in Figure 80.

view 2 class 11 view 4
| ) prop 111
dassl view 1 class 5 sbjDom 3 ) prop 112
. prop 51 31
sbjDom 1 resp
FeTT| FEe| [ R
class 1&
rop 121
- class 6 class 7 grog 122
class2 ® sbjDom 2 prop 61 prop 71
prop %; Tesp 21 prop 62 prop 72
prop resp 22
P class 1 class 14
prop 131 prop 141
prop 132 prop 142
class3 class4 .
2 = class 8 view 3
prop prop
prop 32 prop 42 gigg g%

class 10

prop 101
prop 102

Figure 80—Subject domains and views

A preliminary step in understanding the nature of a subject domain is to describe the subject’s overall pur-
pose and scope and to identify its most abstract responsibilities. A subject domain responsibility is ageneral-
ized concept that the analyst discovers by asking “in general, what do instances within this subject domain
need to be ableto do or to know?’ The classes and contained views in aview together supply the knowledge,
behavior, and rules that make up the subject. These are collectively referred to as the subject domain’s

responsibilities. Subject domain responsibilities are not distinguished as views or classes during the early
stages of analysis.

Subject domains are typically used in initial model development (e.g., Survey level) to allow reasoning about
broad concepts, although they are not restricted to this level and use. For example, the subject domain tends
to become a “natural allocation” when partitioning the model for development since there is the notion of
tighter collaboration between the classes of a subject domain.
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8.1.1.3 Types of view

Views may be formed for avariety of reasons. To show the classes and responsibilities covered by atopic, or
general subject area, a subject-based view can be formed. A subject-based view includes all and only the
constructs that describe the subject area.

To show the classes and properties needed to support a specific business function, a function-based view can
be formed. A function-based view includes all and only the constructs needed to support that function.

To show classes and public responsibilities, a consumer view can be formed. To show classes, public respon-
sibilities, and protected or private properties, a producer view can be formed.

This standard specifies no explicit view types. These types are only illustrative of typical usage.
8.1.1.4 Internal consistency

A nonempty set of instances for which all constraints of a view are satisfied is called a consistent set of
instances for that view. A view is internally consistent if and only if a consistent set of instances exists for
that view. Figure 81 depicts a view that is internally inconsistent because the constraint same requires the
parents of d to be the same instance of ¢, while the generalization semantics require the classes c1 and c2
to be mutually exclusive.

)

cl l c2 l
d .
same i
(co) same def
Self..c1 = Self..c2

Figure 81—Inconsistency within a single view

8.1.2 View syntax

A view may be shown graphically either as a single subject domain or in a view diagram of the contained
classes, responsihilities, relationships, properties, constraints, and notes.

8.1.2.1 View diagram graphic
a) The standard graphic presentation for a view diagram of the classes, responsibilities, relationships,
properties, constraints, notes, and subject domains that compose aview isillustrated along with the
description of these constructsin Clauses 5 and 6.

8.1.2.2 Alternative presentation mode

a)  Constructs may be “hidden” (omitted from graphic presentation) in aview.
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Examples of the constructs that may be “hidden” include attributes, relationship verb phrases,
participant properties, operations, constraints, cardinality specifications, discriminator properties,
note identifiers, and the prefix commalist and suffix commalist for properties.

b) Suppressing selected elements of the syntax allows a view to be presented in alternate modes for
different purposes and audiences. This standard specifies no explicit alternate presentation modes.
The examples below are only illustrative of possible usage.
Examples of aternate presentation modes include views displayed with all of their protected and pri-
vate properties hidden and views displayed omitting the “ (derived)” designation from the prop-
erty signatures. These presentations might be appropriate for users of the classesin the view.

¢) Inany form of abbreviated presentation, all applicable syntactical and semantic rules shall still be
enforced; someinformation is merely not displayed.

8.1.2.3 Subject domain graphic

a) A subject domain shall be represented as a double-bordered rectangle, as shown in Figure 82.

For example:
view name account

For example:

view name account

For example: (showing subject domain

. responsibilities)
view name account

Responsibilities Maintain account balances

or and transaction audit trails.

Contained Classes & Provide account services such
Contained Subject as overdraft protection, sweeps,
Domains and automatic payments.

For example: (showing contained
components)
account

account
checkingAccount
creditCard Account
customer
transaction

Figure 82—Alternative representations of subject domain
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b)  The subject domain name shall be placed

1) Inside or above the rectangle when no responsibilities, contained classes, or contained subject
domain names are shown, or

2) Above the rectangle when text (responsihilities, or contained classes and subject domain
names) is shown inside the rectangle.

When the latter style is used, the presentation can be thought of as a “toggle.” Either subject
domain responsibilities are displayed, or the subject domain’s contained classes and contained
subject domains are presented.

8.1.2.4 Shadow class graphic

a) Thegraphic for a shadow class shall be areference line (i.e., repetitions of one long dash followed
by two short dashes) for the shape appropriate to its cl ass, as shown in Figure 83.

Shadow Independent State Class

Shadow Dependent State Class

)

N/

Shadow Value Class

Figure 83—Shadow class graphic syntax

8.1.3 View rules
8.1.3.1 Naming

a) A view shal have aname.

b)  Theview name shall appear on any presentation of the view, e.g., the view diagram.
¢) A view name may be asimple name or afully qualified name.

d) A view shal have both asimple name and afully qualified name.

1) A view not included within another view shall have a ssmple name that is the same as its quali-
fied name.

2) A view included within another view shall have a qualified name as follows:

A view V' included within another view with the fully qualified name vn shall have the fully
quaified namevn:vsn’, wherevsn’ isthe simple name of the included view.

68 “ Shapes appropriate to class’ are described in 5.2.2 and 5.3.2.
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8.1.3.2 Description narrative

a) A narrative describing the view shall be recorded.

b)  The purpose of the view shall be recorded.

¢) Thescope of the view shall be recorded.
8.1.3.3 Style

a) A view shal have anidentified style, designated as either identity style or key style (Clause 9).
8.1.3.4 Level

a) A view may have anidentified level appropriate to its style, conforming to the specification of levels

stated in either 8.2 (for identity styl€) or 9.10 (for key style).
b) If alevel is specified for aview, that view may not include constructs not applicable to its level, as

specified in either 8.2 (for identity style) or 9.10 (for key style).

8.1.3.5 Composition

a)
b)
0)
d)

e

f)

A view may contain a mixture of classes (state and value classes) and subject domains.
A view may be contained as a subject domain within other views.
No view may contain or be contained within itself, either directly or indirectly (i.e., no cycles).

A view may be composed of a mix of view responsibilities, classes, and other views, i.e., it is not
restricted to having a homogeneous composition.

A defined concept may appear in any number of views.
A view may import a class from another view by naming the class by its fully qualified name.

8.1.3.6 View-component label

a)

b)

h)

Every defined concept in aview shall be labeled with its name or (where applicable) one of its alias
names.

If a defined concept has more than one name in the environment glossary, within a given view it
shall be referred to consistently by only one of its names, regardless of how often it appears in the
view diagram.®®

Thelabel for adefined construct within aview shall conform to thelexical rulesfor naming stated in
4.2.3.

Within aview, no two classes or contained views (subject domains) shall have the same label.
Within aview, no two responsihilities of the same class shall have the same signature.

Within aview, no two relationships that relate the same two classes shall have the same set of names
and role names.

When aclass or responsibility is referred to in RCL, the name label assigned to the defined concept
in the view shall be used.

When an imported class appears in a view, the fully qualified name for the class shall be shown in
the view.

8.1.3.7 Internal consistency

a)

If the objective of the view isthat it be internally consistent, it should be possible to demonstrate that
aconsistent set of instances exists.

69The appearance of a defined concept multiple times on aview diagram is permitted to make the display more convenient.
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8.2 ldentity-style view level

There are distinct levels of view in identity-style modeling.’® Each level has to balance the admittedly con-
flicting goals of any view: be understandable to users and be useful to developers. Each level isintended to
be distinct, specified in terms of the modeling constructs used.

Any view may be restricted to one level. This has two advantages. First, limiting each level to the appropri-
ate set of modeling constructs promotes modeling what is appropriate to the level and only what is appropri-
ate to the level. Second, having distinct levels provides clear work product definition for management.
However, there is no prohibition against forming a view with no level specified and using constructs from
many levels within that view when this approach is useful.

The views in adjacent levels relate to each other by a mapping or transformation. The mapping or transfor-
mation is enabled by employing a consistent set of modeling concepts. Levels do not imply a particular pat-
tern of development, e.g., waterfal, iterative, or fountain. The methodological development pattern
determines the scope of the views and the order in which they are produced, but not their content. The con-
tent of alevel of view isindependent of the methodological development pattern. Table 13 summarizes the
levels of view in identity-style modeling.

Table 12—Summary of view levels (identity style)

Level of view Characteristic modeling constructs Primary intent
1 Subject domains, responsibilities of subject Specify and manage major areas of reusable
domains assets and the applications and projects that
use them.
(Survey level)
2 Survey level plus frameworks and patterns of Architect and integrate features, prototypes,
(super) classes, responsihilities of classes and releases within a project aswell as

across projects and applications.
(Integration level)

3 All classes, relationships, properties, constraints | Complete specification of all semanticsfor a
project or project release, independent of the
(Fully specified level) implementation platform and language.
Technology- Database specifications Complete specification in terms of imple-
dependent levels —or— mentation platform and language constructs.

Classes (programming language, database, prop-
erties, constraints)

(Implementation level)

8.2.1 Identity-style view level semantics
8.2.1.1 Level 1 (survey level)

The survey level deals with subject domains, rather than classes. Classes are too fine-grained for early rea-
soning. While it may be that a subject domain is named for a principal class, the responsibilities of the sub-
ject domain will be seen in subsequent views to be distributed over multiple classes within the subject
domain. Therefore, the subject domain is named in the survey view rather than the class. To allow modeling

705ee 9.10 for adiscussion of the view levels for key-style modeling and for a comparison of view-level concepts and constructs.
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of complex systems, subject domains are recursively specified as containing other subdomains or, ultimately,
classes.

The name “survey” is used instead of “business’ or “enterprise” becauseit is useful to develop this level of
view for technical or support areas aswell as business areas. For example, asurvey-level view would be very
useful (even essentia) for a distributed system of repositories and devel opment tools.

8.2.1.2 Level 2 (integration level)

Theintegration level supports representation and reasoning about the most important concepts in the subject
domain. The classesin thislevel are superclasses or other important, discovered classes—at least initially. A
classis“discovered” in the sense that it represents a concept already present in the minds of the people who
understand the subject domain. The integration level view also includes classes that have been “invented”
(typicaly by abstracting from the discovered classes) to promote system resiliency in the face of change.

Initially, aggregate responsibilities of classes are specified, rather than individual properties. When proper-
ties are depicted, they are not distinguished as attributes or operations.

The integration level must be specific enough to support technical integration decisions. Just as a consi stent
key structure was a prerequisite for integrated databases for the original IDEF1X models, the frameworks of
this level provide the specificity needed for sharing and integration. Some frameworks, such as those for the
presentation layer, may be supplied by vendors. Others are built by the enterprise.

Thislevel isin many ways the most important and the most difficult. It requires deep insights into the needs
of the enterprise and the technical ability to be both abstract and precise.

When fully specified views are available over the scope of the integration level views, the integration level
views can be updated to include al the classes, responsibilities, and properties important to integration and
reuse. For example, acommon techniqueis to specify an abstract superclass with properties possessed by all
its subclasses. The integration level includes abstract superclasses, but might not include their subclasses.

8.2.1.3 Level 3 (fully specified level)

The fully specified level completely specifies all classes. The fully specified view begins as a subset view of
an integration level view. Responsibilities are refined into properties (attributes, participant properties, and
operations) and constraints. The interfaces of individual properties are specified, in terms of both semantics
(the meaning of the property) and syntax (the signature).

A view isfully specified if an implementer can choose any implementation for whatever is not specified (so
long asit is consistent with what is specified) and the result will be acceptable. This criterion is the decision
rule for the boundary on specificity on afully specified view.

8.2.1.4 Technology-dependent levels (implementation level)

The implementation level(s) include all classes needed for implementing a fully specified view on a chosen
platform. An initial implementation level-view typically begins with a default transformation of the fully
specified level classes.

The specification language property redlizations (methods) in the fully specified view act as operational specifi-
cations of the semanticsfor theimplementation level. The classesin an implementation-level view are specified
using the constructs of the implementation platform. For example, if the platform isrelational, then the view is
in terms of tables, columns, datatypes, referential integrity constraints, and so on. If the platform is C++, then
the view is in terms of C++ names, base classes, derived classes, virtual member functions, static members,
operator overloading, and so on. If the platform is Smalltalk, then the view is in terms of Smalltalk names,
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superclasses and subclasses, instance and class variables and methods, and so on. If the platform is Java, then
the view isin terms of Java names, superclasses and subclasses, fields, methods, and so on.

In some cases, the default transformation (classto class, attribute to variable, operation to method, etc.) may
not produce the best implementation; changes may be made for performance, availability, maintainability, or
operational reasons. Classes may be added for database, communications, graphical user interface (GUI), or
other support. Classes may also be partitioned across a series of distributed environments.

8.2.2 Identity-style view level syntax

8.2.2.1 Level 1 (survey level)

There is no special syntax for asurvey-level view, beyond that of its constituent elements.

8.2.2.2 Level 2 (integration level)

Thereis no specia syntax for an integration-level view, beyond that of its constituent elements.

8.2.2.3 Level 3 (fully specified level)

Thereisno specia syntax for afully specified level view, beyond that of its constituent elements.

8.2.2.4 Level 4 (implementation level) and beyond

The implementation level is part of afuture version of this standard. Additional levels may also beidentified,
as needed.

8.2.3 Identity-style view-level rules
8.2.3.1 Rules for survey level, integration level, and fully specified level views

a) Table 13 summarizes the constructs appropriate to the various levels.

b) Inanidentity-style view, a many-to-many relationship may be used at any level.

€¢) An associative class should be introduced into an identity-style view if and only if the associative
class instance has the responsibility to do something or to know something more than simply the
identity of the participating instances.

8.3 Environment

In natural language, an environment is the surrounding things, conditions, circumstances, and influences that
affect the development, decisions, and perspective of an organism or organization. Another name for environ-
ment might be “frame of reference.” In IDEF1X, an environment is a concept space—an areain which a concept
has an agreed-to meaning and name(s). Every view is developed for a specific environment, and an environment
may have any number of views. The environment controls the scope of its views as well as the names, descrip-
tions, properties, and constraints given to its elements. The constituent elements of a view can only be under-
stood, used, and referred to within aframe of reference. Environment provides that frame of reference.

In this way, an environment describes a scope of integration. The names and descriptions of IDEF1X
defined concepts (i.e., views, classes, relationships, responsibilities, properties, constraints) can apply
throughout an envi ronment.”* This enables environments to provide amigration path toward standard names
and meanings for concepts.

"IClasses, responsibilities, properties, and constraints may also be defined within a view (see 8.4).
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Table 13—View level constructs (identity style)

Level
Construct Survey Integration Fully specified
Subject domains Yes Yes Yes
Subject domain responsibilities Yes Yes Yes
State classes Yes, as constituents of Yes, typically abstract Yes
subject domains

Value classes No Some Yes
Relationships No Yes Yes
Generdlizations No Yes Yes
Responsibilities of classes No Yes No
Attributes No Some, but not distin- Yes

guished as attributes
Participant properties No Yes, as areflection of Yes

relationships
Operations No Some, but not distin- Yes

guished as operations
Constraints Typically, no Some Yes
Property realizations No Some Yes
Pre- and post-conditions No Some Yes
Attribute mapping No Some Yes
Detailed cardinalities No Some Yes
Notes Yes Yes Yes

8.3.1 Environment semantics
8.3.1.1 Structuring

Multiple environments may exist and may be structured in hierarchies with each environment having at most
one parent environment. In a given environment, a concept has name(s) and a meaning stated for it in that
environment or in an ancestor environment. If a concept is not described in an environment, its meaning in
the closest ancestor environment is used. This allows local concepts to be described and named in lower,
local environments. As standard names and descriptions are agreed upon, concepts may “move up” to an
environment shared more broadly.

For example, an environment E may be within the scope of a parent environment ¥, meaning that every con-
cept named in F isavailable in (although not necessarily relevant) in . If a concept is described and named
inE, it overrides any meaning of the same concept availablein F. If aconcept is not described in E, either it
isnot (perhaps yet) relevant in E or its meaning in E comes from F.

Figure 84 depicts four environments. Corporate, Engineering, Manufacturing, and Sales. Corporate has been

established as the parent environment of Engineering, Manufacturing, and Sales. Therefore, classes described
in the Corporate environment are available to the others. The situation shown indicates the following:
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a) Sincetheclass customer is described only in the Corporate environment, a common meaning is
available to Engineering, Manufacturing, and Sales. There is no requirement that customer
appear in a view in Engineering, Manufacturing, or Sales. In other words, the meaning of
customer may hot be relevant in any environment other than Corporate. This standard does not
specify how concepts are added to parent environments.

b)  Either Engineering and Manufacturing do not use the concept product, or they use the meaning of
product available in Corporate. Sales has its own sense of product. This local meaning may
enhance, refine, or contradict the Corporate meaning. This standard does not specify if or how
differences between the concept meaning in Corporate and Sales would be resolved.

¢) Engineering and Manufacturing have separate, not necessarily consistent, meanings for part.
Part isnot currently relevant to Sales. This standard does not specify if or how Engineering and
Manufacturing come to acommon meaning for part.

d) The meanings for drawing, tool, and contact are loca to Engineering, Manufacturing, and
Sales, respectively. This standard does not specify if or how these meanings are promoted to
Corporate.

Corporate
ecustomer
sproduct
Engineering Manufacturing Sales
epart spart sproduct
edrawing *tool scontact

Figure 84—Environment hierarchy example

This standard does not specify the size or scope of an environment. The environments illustrated in
Figure 84 are broad. While not typical, an environment can be as small as a single project or user.

8.3.2 Environment syntax

There is no graphical syntax for an environment. Figure 84 is included only to augment the explanation of
environment hierarchies.

8.3.3 Environment rules
8.3.3.1 Naming

a) Each environment shall be assigned a name.
8.3.3.2 Description narrative

a) A narrative description of the environment shall be recorded.
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8.3.3.3 Structuring

a)  Environments may be structured as a hierarchy.

b) Multiple separate hierarchies may be established, i.e., there is no requirement that environments
“converge” into asingle environment at the top.

c) A defined concept in environment E shall override any meaning of the same concept in an ancestor
environment of E.

8.3.3.4 Composition

a)  Anenvironment may contain views of different levels.
b)  Anenvironment shall be supported by one and only one glossary (see 8.4).

8.4 Glossary

Environments and views are supported by glossaries. A glossary is the collection of the names and descrip-
tions of al terms that may be used for defined concepts (views, classes, relationships, responsibilities, prop-
erties, and constraints) within an environment or view. The principal motivation for the glossary is to ensure
consistent semantics across all views in an environment’2 (see 8.3). In particular, an environment glossary
enables meaningful merging and subsetting of views, which in turn enables systems integration.

The glossary describes the concepts; views make statements using those concepts. The glossary reflects the
descriptions, or meanings, of the concepts; it does not contain the concepts themselves. For example, it isthe
meaning of customer that isin the glossary, not the structuring and declarations of the customer class
itself. The allocation of properties and constraints to classes, the taxonomy of classes, and the sentences for
properties and constraints are specified only within views. It is the description (meaning) that can be com-
MON across Views.

8.4.1 Glossary semantics
8.4.1.1 Name/alias

Each concept within an environment is given a name. Some concepts may be given more than one name.
When a concept has more than one name, one of its names may be designated as the “primary” name, in
which case each of the other names is an alias name for the concept. However, if none of the multiple names
is designated as “primary,” then the names are not distinguished; they are all simply “names.” Figure 85
illustrates concept names, primary names, and aliases.

« concept-1 (meaning) name-a

« concept-2 (meaning) name-b, name-c, name-d
* concept-3 (meaning) name-e, name-a

« concept-4 (meaning) name-g, name-b, name-h

where name denotes “ primary”

Figure 85—Concept names and aliases

nits explanation of Glossary [B13], p. 24 says “Definitions are held in a glossary common to al models within the context of the
stated purpose and scope.” If the purpose isintegration, the glossary needs to be common over the intended scope of integration.
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As Figure 85 illustrates, the same name may be given to more than one concept within an environment.
However, no name may be the primary name for more than one concept in an environment. The primary
name of one concept may be a nonprimary name of another.

When aview presents a concept (e.g., in adiagram), it uses one (and only one) of the names specified for the
concept in the environment glossary. Referring to Figure 85, if concept-3 appears in a view diagram,
either name-e or name-a must be used exclusively in that view, or a new name may be created and added
to the environment glossary.

Additionally, there are restrictions prohibiting giving certain concepts the same name as other concepts in
views (see 8.1.3). Theserestrictions are as follows:

a) Notwo classes or subject domains may use the same name, and

b)  Two properties or constraints of the same class may use the same name only if they have different
signatures (see dlso 6.3.3.1, 6.7.3.2, 7.5.3, and 8.1.3.6).

8.4.1.2 Description narrative

Each defined concept within an environment should be given a statement of its meaning. This meaning is
written in narrative text.

8.4.1.3 Environment glossary

An environment glossary allows defined concepts presented in aview to have acommon meaning across the
environment, independent of view. These concepts are then available to be used in views. In thisway a state
classsuch as employee may appear in multiple views, with a somewhat different set of properties and rela-
tionships in each, and yet still reflect the same concept. The intent is that employee be the class of all
employees, i.e., individual persons who are classified as belonging to the class employee on the basis of
some common criteria. It is that sense of what it means to be an employee that is described in the glossary.
Similarly, a concept such as birthDate may be described once within the environment and used as a
value class in appropriate views. It is that sense of what a birth date means globally that is described in the
glossary.

Some defined concepts within an environment express the meaning of a combination of other defined con-
cepts. For example, the concept of employee might be stated as one glossary entry and the concept of
birthDate might be stated as another defined concept. A third defined concept might explain the sense of
what an “employee birthDate” iSif that concept has a more specific meaning than the terms individu-
ally. When birthDate is used as an attribute of employee, with or without the assignment of a role
name, the sense of what it isto be an “employee birthdate” is provided by this compound defined concept. In
other words, this “in context” meaning includes the sense of how abirthDate describesan employee.

8.4.1.4 Model glossary

Since amodel may span environments, the scope and content of its glossary is determined by the views con-
tained in the model. A model glossary isthe collection of the names and descriptions of all defined concepts
that appear within the views of that model.

8.4.2 Glossary syntax

Thereisno graphical syntax for aglossary.
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8.4.3 Glossary rules
8.4.3.1 Composition

a)  Anenvironment glossary shall contain the descriptions and names entered locally as well asthosein
all environments higher in the hierarchy of environments.

b) A concept described and named in alocal environment shall override, for that environment, any
description and name(s) for the concept from an environment higher in the hierarchy.

¢) A model glossary shall collect all concepts described in each view the model contains.

8.4.3.2 Name

a) Every defined concept shall be named.

b) A name, whether primary, dlias, or undesignated, shall conform to thelexical rulesfor naming stated
in4.2.

¢) Noname may be the primary name for more than one concept in an environment.

d) The environment glossary may name (and define) concepts not used in any view within the
environment.

8.4.3.3 Description narrative

a) The environment glossary shall contain a narrative description for each class within the
environment.

b) The description of aclass should alow a user of the class to determine whether a thing qualifies as
an instance of the class.

¢) Theenvironment glossary shall directly contain a narrative description of the environment itself.

d) The environment glossary may contain a narrative description for each view, relationship,
responsibility, property, and constraint within the environment.

€) The same meaning may not apply to two distinct defined concepts within an environment.

f)  The description of a defined concept may reference the description of (one or more) other defined
concepts, e.g., to avoid repeating sections of text already stated in the referenced description.

g) For each defined concept, the glossary shall permit the specification of additional optional
information such as author name, creation date, and last modification date.

h) A view should have a narrative description. This description may contain statements about the
relationships in the view, brief descriptions of classes and properties, discussions of rules or
constraints that are specified, and any other information useful to the user of the view.

i)  For each view, the environment glossary shall permit the specification of additional optional
information such as completion or review status and view type (e.g., function-based, subject-based).

i) All the elements of aview description shall be displayable on the view diagram.

k) Themodel glossary shall directly contain a narrative description of the model itself.

8.5 Model

A model is a packaging of one or more views along with narrative descriptions of the views and view com-
ponents (e.g., classes, properties) called out in the views. The components of an IDEF1X model are the con-
structs (e.g., classes, properties) described in Clauses 5 and 6. These constructs are first organized into
views. Views may then be organized into models (see 8.1).

IDEF1X models are a representation of something. Like many other kinds of models (e.g., model cars, mod-
els of the solar system), IDEF1X models suppress certain aspects of the modeled subject. This suppressionis
donein order to make the model easier to deal with, to make it more economical to manipulate, and to focus
attention on aspects of the modeled subject that are important for the intended purpose of the model. For
instance, an accurate model of the solar system could be used to predict when planetary conjunctions will
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take place and the phases of the moon at a particular time. Such a model would generally not attempt to rep-
resent the internal workings of the sun or the surface composition of each planet.

The success of amodel very much depends upon a common understanding of just which aspects of the mod-
eled subject are suppressed and which ones are attended to in the given model. Accordingly, each IDEF1X
model should be accompanied by a statement of purpose (describing why the model was produced) and a
statement of scope (describing the general area covered by the model).

8.5.1 Model semantics

8.5.1.1Types

Models may be formed for a variety of reasons. There are no explicit model types. Any collection of views
gathered together for a stated purpose may be called amodel.

8.5.2 Model syntax
Thereis no graphical syntax for amodel.
8.5.3 Model rules
All the following rules apply only to a completed model.
8.5.3.1 Naming
a A mode shall be assigned a name.
8.5.3.2 Description narrative
@) A narrative description of the model shall be recorded.
b)  The purpose of the model shall be recorded.
¢) The scope of the model shall be recorded.
8.5.3.3 Composition
@ A mode shall contain one or more views.
b) A model shall contain aglossary.

¢) A mode may contain views of different levels.
d) A mode may contain views from different environments.
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9. Key-style modeling

The identity style of IDEF1X modeling introduced in this standard supports, but is not limited to, the con-
struction of object models. Object techniques are gaining an ever-increasing community of users who must
understand not only the data (information) aspect of a system but also its behavior. The features of the iden-
tity-style language support this audience and will be extended in future versions of this standard to provide
additional capabilities.

Data modeling, however, continues to provide an effective technique for devel oping integrated databases and
will continue to be used for what is expected to be a considerable period of time. Many organizations have
invested heavily in constructing models based on earlier versions of IDEF1X and are expected to continue to
do so. Both data modelers and object modelers must be supported.

As described in 1.3, the needs of IDEF1X users continue to evolve. While many users will adopt the object
techniques early, others will, for various reasons, continue to develop data models. With minor exceptions, a
model conformant with earlier versions of IDEF1X will remain conformant under this version.”3

This clause describes how to apply the concepts presented in the previous clauses to produce a key-style
view. The key style of IDEF1X modeling is backward-compatible with the US government’s federal standard
for IDEF1X, FIPS PUB 184 [B13]. Key-style models may continue to be used to represent the structure and
semantics of data within an enterprise, i.e., for data (information) models.”* With the extension of domain
into value class, key-style models can aso be used to support the development of extended-relational imple-
mentations.

A key-style model is a highly restricted identity-style model. The “new concepts’ described in Figure 2 are
not used in a key-style model, and the features indicated as “unnecessary for the object model” (primary
keys, foreign keys, and identifying relationships) are retained. The result is alanguage that is almost identi-
cal to that described in the current federal standard, FIPS PUB 184 [B13]. To assist in mapping the federal
standard to this |EEE standard, the topicsin this clause are presented in a structure similar to that of Section
3 (Syntax And Semantics) of FIPS PUB 184 [B13]. The following topics are discussed in this clause in sup-
port of key-style modeling. For a condensed comparison of the identity style and key-style constructs, see
also Annex B.

a) Entity: Anentity roughly corresponds to a severely limited state class.

b) Domain/Value Class: Thedomainin FIPS PUB 184 [B13] isreplaced by value class.

c) View: A view roughly corresponds to an identity-style view but is limited to key-style constructs.

d) Attribute: An attribute roughly corresponds to alimited identity-style attribute.

€) Relationship: A “one-to-many relationship” is represented by a migrated foreign key rather than a
participant property. A “many-to-many relationship” (nonspecific relationship) is a severely limited
version of itsidentity-style counterpart.

f)  Generalization: Generalization has the same meaning as in identity-style modeling, but is
represented by foreign keys.

g) Primary and Alternate Key: A key represents a uniqueness constraint. One key (the primary)
represents the identity of each entity instance. Keys are not specified in identity-style modeling,
which employ intrinsic instance identity instead.

h) Foreign Key: A foreign key is used to represent a relationship; foreign keys are not specified in
identity-style modeling.

73The exceptions are as follows; Domain is replaced by value class. The integer number that could follow the entity namein [B13] has
been dropped from this standard. The allowance for “Author Conventions’ and the “ For Exposition Only” view annotation in [B13] has
been dropped from this standard. The “range” cardinality annotation in [B13] has been dropped from this standard (a note can be used
to record the range). The second method of naming the relationship from the child perspective, i.e., using the direct object of the phrase
in place of the entire verb phrase asin [B13], has been dropped from this standard.

"Note that none of the syntax or rulesin this clause applies to the model constructs of an identity-style view, unless specifically stated.
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i)  View Level: Theview levelsroughly correspond to the identity-style view levels,
j)  Glossary: Glossary objectives are similar in key-style and identity-style modeling.

k) Note: Notes are used extensively in key-style modeling as there is no other way to specify many
relevant constraints.

Also discussed in this clause are key-style lexical rules. Finally, Annex B provides some comments on
migration considerations for those users moving from data modeling to object modeling.

Theformalization for IDEF1X in Clause 10 of this standard covers only the identity style (the full version of
the language). The key style is not formalized in this standard. Doing so would yield aformalization similar
to that in Annex B of FIPS PUB 184 [B13].

9.1 Entity

Entities in key-style modeling represent the things of interest in data modeling, that is, things about which
some information is relevant. A key-style entity is equivalent to a state class that has only attribute proper-
ties, that has no class-level properties, and whose instances are uniquely identified by one or more attribute
values (i.e., the instances have none of the participant properties, operations, or constraints availablein iden-
tity-style views).

The notion of classification in key style and identity-style modeling differsin one significant way. Inthe key
style, there is a restriction on classification that forbids any two instances of a class from agreeing on all
attribute values. The restriction is due to the fact that, so far as key-style modeling is concerned, there is
nothing else to know about an entity.”

9.1.1 Entity semantics
9.1.1.1 Class/instance

A key-style entity class (simply, entity) is a representation of a set of real or abstract things (people, objects,
places, events, ideas, combinations of things, etc.) that have common attributes or characteristics. An entity
instance (simply, instance) is an individual member of the set. A real world object or thing may be repre-
sented by more than one entity within aview. For example, John Doe may be an instance of both the entities
employee and buyer. Furthermore, an entity instance may represent a concept involving a combination
of real world objects. For example, John and Mary could be the participants in an instance of the entity
married-Couple.

9.1.1.2 Independent/dependent

An entity isidentifier-independent (simply, independent) if each instance of the entity can be uniquely iden-
tified without determining its relationship to another entity. An entity is identifier-dependent (simply, depen-
dent) if the unique identification of an instance of the entity depends upon its relationship to another entity.
Expressed in terms of the foreign key, an entity is said to be dependent if any foreign key iswholly contained
inits primary key (see 9.8). Otherwise, it isindependent.

"SBecause identity-style modeling includes the concept of identity, there is no need for this restriction. If such a restriction were to
apply to aclass of objects, auniqueness constraint to that effect could be declared. If this were done for every class, the result would be
key-style classification. The key-style restriction that an entity class have at least one attribute is a consequence of the distinguishability
restriction and is similarly not needed in the identity-style model.
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9.1.1.3 Naming

The entity name is a noun phrase that describes a thing in the set that the entity represents. The noun phrase
isin singular form, not plural. Abbreviations and acronyms are permitted; however, the entity name must be
meaningful and consistent throughout the view.

9.1.2 Entity syntax
9.1.2.1 Graphic

An entity shall be represented by arectangle:

a) A dependent entity shall be represented by a rectangle with rounded corners (see Figure 86).
b)  Anindependent entity shall be represented by a rectangle with square corners (see Figure 86).

Identifier-Independent Entity

Syntax Example
entity-Name employee

Identifier-Dependent Entity

Syntax Example
entity-Name p-O-Ttem

Figure 86—Key-style entity syntax

9.1.2.2 Label

a) Each entity shall be assigned alabel.”®

b) Thelabel shall be placed either:
1) Above or inside the rectangle when no attribute names are shown (see Figure 86), or
2) Above the rectangle when attribute names are shown in the rectangle (see Figure 87).

¢) Inaview, an entity shal be labeled by either its entity name or one of its aliases.

d) Anentity may be labeled by different names (i.e., aliases) in different views in the same model (see
9.11).

9.1.3 Entity rules
9.1.3.1 naming

a)  Within aview, each entity shall have a unique name.
b)  Within aview, the same meaning shall always apply to the same entity name.

"®The integer number that could follow the entity name in [B13] has been dropped from this standard.
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c) Within a view, the same meaning shall not apply to different entity names unless the names are
aliases.
d) Withinaview, no entity may have the same name as an attribute.

€) No view shal contain two distinctly named entities in which the names are synonymous. Two
names are synonymous if either isdirectly or indirectly an aiasfor the other, or thereisathird name
for which both names are aliases (either directly or indirectly).

9.1.3.2 Attributes

@) Inacompleted key-based or fully attributed view, an entity shall have one or more attributes whose
values uniquely identify every instance of the entity (see 9.7).

b) Inacompleted key-based or fully attributed view, an entity shall have one or more attributes that are
either owned by the entity or migrated to the entity through a relationship (see 9.8).

9.1.3.3 Description narrative

a) A narrative description of the entity, along with alist of synonyms or aliases (if any), shall be stated
in the glossary (see 9.11).

9.1.3.4 Relationships and foreign keys

a)  Anentity may have any number of relationships with other entitiesin the view.

b) If an entire foreign key is used for al or part of an entity’s primary key, then the entity shall be
identifier-dependent (see 9.8).

¢) Conversely, if only aportion of aforeign key or no foreign key attribute at all is used for an entity’s
primary key, then the entity shall be identifier-independent (see 9.8).

9.2 Domain/value class

What was called domain in FIPS PUB 184 [B13] is subsumed by value class. Value classes as described in
5.3 and 6.4 may be used with key-style modeling. A domain in FIPS PUB 184 [B13] is avalue class that

a) Isnotacollection class,

b) Hasno operations,

¢) Hasno congtraints other than value list or value range constraints,
d) Hasno class-level properties,

€) Hasexactly one generic parent,

f)  Hasattributes that are al public and nonderived, and

g) Isnever mapped to by an attribute of a different name.

9.3 Key-style view

A key-style view is a collection of entities and assigned value classes (attributes) assembled for some pur-
pose. A view may cover the entire area being modeled or only a part of that area. A key-style model com-
prises one or more views (often presented in view diagrams representing the underlying semantics of the
views), along with descriptions of the entities and value classes (attributes) used in the views.

Views serve the same purpose in key-style and identity-style modeling, that is, to collect together those con-
cepts that must be considered together to make sense of an area being studied. Views allow the recombina-
tion of those concepts for reasoning about related areas.
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9.3.1 Key-style view semantics

In key-style modeling, entities and value classes are described in a common glossary and mapped to one
another in views. In thisway an entity such as employee may appear in multiple views in multiple models
and have a somewhat different set of attributesin each. In each view, it isrequired that the entity employee
means the same thing. The intent is that employee be the class of al employees, that is, individual things
are classified as belonging to the class employee on the basis of some similarity. It is that sense of what it
means to be an employee that is stated in the glossary. Similarly, the value class employee-Name is
described once and used as an attribute in appropriate views.

9.3.2 Key-style view syntax
9.3.2.1 Composition

a) The constructs depicted in a key-style view diagram, i.e., entities, attributes, relationships, and
notes, shall comply with all syntax and rules governing the individual key-style constructs.

9.3.2.2 Presentation

a) The syntactical definitions of the IDEF1X language characterize the full set of IDEF1X constructs
and their use.

b)  Thisdoes not however, preclude hiding (i.e., optionally omitting the display of) certain constructsin
order to alow an alternate presentation of a view. Many times this hiding is done to suppress detail
not needed for a certain discussion, or to abstract aview to permit abroader view. An example of an
alternate presentation might be the presentation of a fully attributed view showing only the entities
and their relationships to allow the view to be reviewed from an entity-relationship perspective.
Examples of some of the possible constructs that may be hidden include
1) Attributes
2) Primary keys designations
3) Foreign keys
4) Rolenames
5) Relationship names
6) Cardinality specifications
7) Category discriminators
8) Alternate key designations
9) Noteidentifiers

¢)  When constructs are hidden, all applicable syntactical and semantic rules shall still be enforced.

9.3.3 Key-style view rules
9.3.3.1 Naming

a) Eachview shal have aunique name.
b)  Theview name shall appear on any presentation of the view, e.g., the view diagram.

9.3.3.2 Composition

a)  Although an entity may beincluded in any number of views, it may appear only once within agiven
view.

9.3.3.3 Optional information

a) A view may have additional descriptive information including, for example, the name of the author,
dates created and last revised, level (e.g., entity-relationship, key-based, fully attributed),
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completion or review status, and so on. A view should be accompanied by a statement of purpose
and scope, aswell as abrief description of the area covered.

b) A textua description of the view may also be provided. This description may contain narrative
statements about the relationships in the view, brief descriptions of entities and attributes, and
discussions of rules or constraints that are specified.

9.3.3.4 Levels

a) A model may contain views of different levels.”’

9.4 Attribute

An attribute is a mapping from the instances of an entity to the instances of the value class for that attribute.
This value class is also referred to as the type of the attribute. In key-style modeling, an attribute is associ-
ated with a specific entity.

Key-style view attributes are similar to identity-style view attributes in that they represent mappings, are sin-
gle-valued (functions), and they may be declared either total or partial. However, in a key-style model, the
additional attribute classifications available within identity-style modeling (e.g., class-level, constant, intrin-
sic) are not available.”® Yet, overall, the essential notion of attribute is the same in key-style and identity-
style modeling.

9.4.1 Attribute semantics
9.4.1.1 Attribute/attribute instance

In an IDEF1X key-style view, an attribute type (simply attribute) represents a type of property (characteris-
tic) associated with an entity. An attribute instance is a specific property of an individual instance of the
entity. An attribute instance is specified by both the type of property and its value, referred to as an attribute
value. An instance of an entity, then, will usually have a single specific value for each associated attribute at
apoint in time. For example, employee-Name and birth-Date may be attributes associated with the
entity employee. An instance of the entity employee could have the attribute values of “Jenny
Lynne” and “February 27, 1953", respectively.

9.4.1.2 Naming

Each attribute isidentified by the unique name of its underlying value class. The name is expressed as a noun
phrase that describes the characteristic represented by the attribute. The noun phrase isin singular form, not
plural. Abbreviations and acronyms are permitted; however, the attribute name must be meaningful and con-
sistent throughout the model. A narrative description, along with alist of synonyms or aliases (if any), must
be recorded in the glossary.

In akey-style model, an attribute name is restricted to be the same as its value class name. Thisrestriction is
done to promote integration across views. A value class is described within an environment and appliesto all
views in that environment. Naming an attribute for its value class has the effect of achieving a common
meaning for every attribute within an environment and, therefore, allows views to be cleanly merged.79

""The allowance for “Author Conventions’ andthe“For Exposition Only” view annotationin [B13] has been dropped from this
standard.

781t can therefore be said that a key-style attribute is a property that retains only the ability to know, not to do.
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9.4.1.3 Mapping completeness

In key-style models, an attribute may be designated as optional, i.e., the mapping is partial (some instances
have no value for the attribute). An optional attribute has at most one value for an entity instance.

An attribute not designated as optional is, by default, total (mandatory). A mandatory attribute has exactly
one value for each instance.

9.4.1.4 Attribute ownership

An attribute of an entity that is not aforeign key in that entity is said to be “owned” by that entity. Key-style
modeling imposes a single ownership rule. This rule says that every attribute in a view must be owned by
exactly one entity in the view.&

9.4.1.5 Attribute migration

In addition to an attribute being “owned” by an entity, an attribute may be present in an entity due to its
“migration” through a relationship or through a generalization structure (see 9.8). For example, if every
employee is assigned to a department, then the attribute department-Number could be an attribute of
employee that has migrated through the relationship to the entity employee from the entity depart-
ment. The entity department would be the owner of the attribute department-Number. Only pri-
mary key attributes may be migrated through a relationship. The attribute department-Name, for
example, would not be amigrated attribute of employee if it was not part of the primary key for the entity
department.

9.4.1.6 Attribute inheritance

In an entity-relationship (ER), key-based (KB) or fully attributed (FA) level key-style view, every attributeis
owned by only one entity, but an attribute may be applicable to an entity via inheritance. The attribute
monthly-Salary, for example, might apply to some instances of the entity employee but not all.
Therefore, a separate but related category entity called salaried-Employee might beidentified in order
to establish ownership for the attribute monthly-Salary and to distinguish between employees in gen-
eral and those who earn salaries. Since an actual employee who was salaried would represent an instance of
both the employee andthe salaried-Employee entities, attributes common to all employees (such as
employee-Name and birth-Date) are owned attributes of the employee entity rather than just the
salaried-Employee entity.

7The cost of naming an attribute for its value class is a proliferation of value classes (e.g., hotel-Fahrenheit-Temperature,
room-Fahrenheit-Temperature), perhaps generalized as a common value class (e.g., fahrenheit-Temperature). This
approach causes no problem in key-style models because, other than providing a set of “types’ for attributes, there are few other
demands on the value class generalization hierarchy.

Although the same rule could be adopted in an identity-style model, there would be problems. One is that, given operations on abstract
value classes (e.g., temperature), there are many more demands on the value class generalization hierarchy; the proliferation of
subclasses occasioned by the key-style naming requirement would be a distracting burden. Another problem is a conflict with polymor-
phism. In an identity-style model, it is not uncommon to have an attribute (more generally, a property) of a given name overridden by a
property of the same name in a subclass. Often, both have the same value class, but in some cases they do not. If the attribute name was
required to be the same as the value class name in an identity-style mode, there would be no way to name the attribute to provide for
polymorphism.

80The single ownership rule originated in IDEF1, which did not have generalization. The intent of the rule is to promote normalized
models with consistent business rules. The implicit assumption is “same name, same meaning.” The more subtle assumption is that
attributes of the same name in distinct classes may not have the same realization. In fact, this difference may be precisely the objective
in an identity-style model, where the overriding of attributesin a subclassis used to specify attributes of the same name and same mean-
ing but having differing realizations.

The single-ownership ruleisin conflict with polymorphism for reasons very similar to those discussed above under naming. The single-
ownership ruleis, therefore, not appropriate in identity-style modeling. If such arule were desired for some reason, there is nothing in
key-style modeling to prevent it. It would be regarded as legal but unwise.
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Such attributes are said to be “inherited” by the category entity. They are not included in the category entity’s
list of attributes: they only appear in the list of attributes of the generic entity.

9.4.1.7 Primary key

In key-style modeling, an entity must have an attribute (or combination of attributes) whose value uniquely
identifies every instance of the entity. This attribute or attributes form the primary key of the entity (see 9.7).
For example, the attribute emp 1 oyee-Number might serve as the primary key for the entity employee
while the attributes employee-Name and birth-Date might be nonkey attributes.

9.4.1.8 Derived attribute

In key-style modeling, there is no prohibition against derived attributes, but many modelers impose such a
restriction in order to rule out an endless pursuit of derivable results.21 One of the tenets of data modeli ngis
that a stable, base set of data will alow the derivation of an infinite amount of information. The attempt to
identify all the potential derivations on a data model can become a never-ending task.

9.4.2 Attribute syntax
9.4.2.1 Graphic

a)  Attributes shall be shown by listing their names inside the associated entity box.

b) Attributes that specify the primary key shall be placed at the top of the list and separated from the
other attributes by a horizontal line (see Figure 87).

¢) Anattributethat is not part of a primary key may have no value.

d) An attribute that may have no value is marked by the symbol “ (0)” (an upper case O, for
“optional”) following the attribute name.

entity-name

. Primary-Key
attribute-Name } a €

Attributes

attribute-Name
attribute-Name
attribute-Name
attribute-Name

Example:
employee

employee-Number

employee-Name
birth-Date
review-Date (O)

Figure 87—Attribute and primary key syntax

81) denti ty-style models, on the other hand, directly support derived attributes with somewhat less of a cultural bias against them. Deri-
vation rules must be specified somewhere and, since all computation is done by objects (instances), a referenced attribute has to be
derived by some object. In practice, the avoidance of an endless pursuit of derived results in identity-style modeling comes from a dis-
tinction between common enterprise objects, application-specific objects, and presentation objects.
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9.4.3 Attribute rules
9.4.3.1 Naming

a) Each attribute shall be avalue class used in an entity in aview.

b) Each attribute shall have aunique name, and the same meaning shall always apply to the same name.
Furthermore, the same meaning may not apply to different names unless the names are aiases of
each other.

¢) Inaview, an attribute shall be labeled by either its attribute name or one of its aliases.

d) Inaview, if an attribute is an owned attribute in one entity and a migrated attribute in another entity,
either
1) It shall have the same namein both or
2) It shall have arole name (or an dlias for arole name) as the migrated attribute.

€) An attribute may be labeled by different names (i.e., aliases) in different views within the same
model.

f)  No view may contain two distinctly named attributes in which the names are synonymous. Two
names are synonymous if either isdirectly or indirectly an alias for the other, or thereisathird name
for which both names are aliases (either directly or indirectly).

9.4.3.2 Attribute ownership
a)  Anentity may own any number of attributes.
b) In an entity-relationship, key-based or fully attributed view, every attribute shall be owned by
exactly one entity.

9.4.3.3 Attribute migration

a  Anentity may have any number of migrated attributes.
b) A migrated attribute shall be part of the primary key of arelated parent entity or a generic entity.

9.4.3.4 Primary key
a) Every instance of an entity shall have avalue for every attribute that is part of its primary key.
9.4.3.5 Function/multi-valued

a) Noinstance of an entity may have more than one value for an attribute associated with the entity.

9.5 Relationship

In earlier versions of IDEF1X,82 specifications based on foreign keys were used to capture the underlying
sense of dependency between entities. In key-style modeling, entities and relationships are classified based
on the role that the foreign keys play in the entity. While such distinctions are not appropriate in a modeling
style that distinguishes instances using identity rather than primary keys, the discussion here applies when
key-style modeling is used. In an IDEF1X key-style view, relationships are used to represent associations
between entities.®

82These earlier versionsincluded [B3], [B13], and[B15].

83|t can, therefore, be said that a key-style relationship is simply arelationship in which the identity of the parent participant is repre-
sented by a primary key of the parent held in the child.
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9.5.1 Relationship semantics
9.5.1.1 Specific/nonspecific

A specific relationship (simply, relationship) is an association (connection) between two entities in which
each instance of one entity (referred to asthe parent entity) is associated with zero, one, or more instances of
the second entity (referred to as the child entity). Furthermore, each instance of the child entity is associated
with zero or one instance of the parent entity. For example, a specific relationship would exist between the
entities buyer and purchase-0Order if abuyer issues zero, one, or more purchase orders and each pur-
chase order must be issued by a single buyer.

Such parent-child relationships are considered to be “ specific” relationships because they specify precisely
how instances of one entity relate to instances of another entity. By contrast, a nonspecific relationship may
be used to represent a “many-to-many” association between entities. A nonspecific relationship (many-to-
many relationship) is an association between two entities in which each instance of the first entity is associ-
ated with zero, one, or many instances of the second entity, and each instance of the second entity is associ-
ated with zero, one, or many instances of the first entity. For example, if an employee can be assigned to
many projects and a project can have many employees assigned, then the connection between the entities
employee and project can be expressed as a nonspecific relationship.

In the initial development of a model, it is often helpful to identify nonspecific relationships between enti-
ties. This nonspecific relationship may be replaced with specific relationships later in the model develop-
ment by introducing a third entity, such as project-Assignment, which is a common child entity in
specific relationships with the employee and the project entities. The new relationships would specify
that an employee has zero, one, or more project assignments. Each project assignment is for exactly one
employee and exactly one project. An entity introduced to resolve a nonspecific relationship is sometimes
called an intersection entity (associative entity).

Nonspecific relationships may only remain in completed entity-relationship level key-style views. In a key-
based or fully attributed level view, all associations between entities must be expressed as specific (parent/
child) relationships.8* In the remainder of this clause, use of the simple term “relationship” will denote “spe-
cific relationship” unless otherwise qualified.

9.5.1.2 Relationship type/instance

A key-style view diagram depicts the type (set) of relationships between two entities. A specific instance of
the relationship associates specific occurrences of the entities. For example, “buyer John Doe issued Pur-
chase Order number 123" is an instance of arelationship.

9.5.1.3 Relationship classification

A relationship is designated as identifying if the foreign key attributes it contributes are wholly contained in
the primary key of the child entity. Otherwise, the relationship is designated as nonidentifying.

9.5.1.4 Cardinality

A relationship may specify its cardinality, i.e., how many child entity instances may exist for each parent
instance. The following relationship cardinalities may be expressed from the perspective of the parent
entity:3°

a) Each parent entity instance must have at |east one associated child entity instance.

84Many-to-many relationships may remain in corresponding levels of identity-style views.
85The“range’ cardinality annotation in [B13] has been dropped from this standard. A note may be used to record the range.
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b) Each parent entity instance may have zero or, at most, one associated child instance.

¢) Each parent entity instance is associated with some exact number of child entity instances.

d) Each parent entity instance may have zero or more associated child entity instances (If no cardinality
isexplicitly stated from the perspective of the parent entity, thisisthe default.)

Cardinality may aso be described from the perspective of the child entity, as will be discussed bel ow.
A nonspecific relationship may specify the cardinality from both directions of the relationship.
9.5.1.5 Identifying relationship

If an instance of the child entity isidentified by its association with the parent entity, then the relationship is
referred to as an identifying relationship, and each instance of the child entity must be associated with
exactly one instance of the parent entity. For example, if one or more tasks are associated with each project
and tasks are only uniquely identified within a project, then an identifying relationship would exist between
the entities, project and task. In other words,, the associated project must be known in order to identify
one task uniquely from al other tasks (see 9.8). The child in an identifying relationship is always existence-
dependent on the parent, i.e., an instance of the child entity may exist only if it isrelated to an instance of the
parent entity. An identifying relationship is always mandatory from the perspective of the child instance.

9.5.1.6 Nonidentifying relationship

If every instance of the child entity can be uniquely identified without knowing the associated instance of the
parent entity, then the relationship is referred to as a nonidentifying relationship. For example, although an
existence-dependency relationship may exist between the entities buyer and purchase-Order, pur-
chase orders may be uniquely identified by a purchase order number without identifying the associated
buyer.

9.5.2 Relationship syntax
9.5.2.1 Graphic

a) A relationship shall be depicted as aline drawn between the parent entity and the child entity with a
solid dot at the child end of the line.

b)  Theunconstrained, default cardinality from the perspective of the parent entity shall be zero, one, or
many.

c) A “P (for positive) shal be placed beside the dot to indicate a cardinality of one or more (see
Table 14).

d) A “Z" shall be placed beside the dot to indicate a cardinality of zero or one (see Table 14).

e) If the cardinality is an exact number, a positive integer number shall be placed beside the dot (see
Table 14).

f)  Other cardindlities (e.g., “more than 3,” “exactly 7 or 9,” or ranges), may be recorded as notes that
are placed beside the dot (see Table 14).

0g) A nonspecific relationship shall be depicted as aline drawn between the two associated entities with
asolid dot at each end of theline.

h)  The cardinality of a nonspecific relationship may be expressed at both ends of the relationship using
the notation shown in Table 14.

9.5.2.2 Identifying relationship
a) A solid line shall depict an identifying relationship between the parent and child entities (see

Figure 88).
b) If anidentifying relationship exists,
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Table 14—Parent perspective cardinality syntax

Cardinality Graphic Cardinality expression

A solid dot indicates alack of any cardinality constraint, ZEro or more
i.e., zero, one, or more. ‘
A “P" beside a solid dot indicates one or more (at least one or more
one, and possibly more).

Iy
A “z" beside a solid dot indicates zero or one (at most ZEro or one
one).

:
A positive integer beside the dot indicates a cardinality exactly n
of an exact number.

'y
A note number (an integer enclosed in parentheses) indi- referenceto note (n)
cates a cardinality specified in the body of the note. ‘ where cardinality is speci-

fied.
(n)

d)

1) The child entity shall always be an identifier-dependent entity (represented by a rounded rect-
angle) and

2) The primary key attributes of the parent entity shall also be migrated primary key attributes of
the child entity (see 9.8).

The parent entity in an identifying relationship shall be identifier-independent unless the parent
entity is also the child entity in some other identifying relationship, in which case both the parent
and child entities shall be identifier-dependent.

An entity may have one or more relationships with other entities. However, if the entity is a child
entity in any identifying relationship, it shall aways be shown as an identifier-dependent entity
(represented by arounded rectangle), regardless of its rolein the other relationships.

9.5.2.3 Nonidentifying relationship

a)
b)

0)

A dashed line shall depict a nonidentifying relationship between the parent and child entities.
Both parent and child entities shall be identifier-independent entities in a nonidentifying relationship
unless either or both are child entitiesin some other relationship that is an identifying relationship.

A nonidentifying relationship shall be designated as either mandatory or optional from the
perspective of the child instance.

9.5.2.4 Mandatory nonidentifying relationship

a)

b)

In amandatory (total) nonidentifying relationship, each instance of the child entity shall be related to
exactly oneinstance of the parent entity (see Figure 89).

A mandatory nonidentifying relationship shall have no annotation on the relationship line adjacent
to the parent entity rectangle (see Figure 89).
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entity-A
key-Attribute-A 4 Parent Entity?
- Identifying Relationship

Relationship verb phrase

entity-B
e

key-Attribute-A (FK)
key-Attribute-B - Child Enti tyb

N /

8The parent entity in an identifying relationship may be an identifier-independent entity (as
shown) or an identifier-dependent entity depending upon other relationships.

bThe child entity in an identifying relationship is always an identifier-dependent entity.

Figure 88—Identifying relationship syntax

entity-A
key-Attribute-A 2 Parent Entity?
1
Total
I - Nonidentifying
I Relationship
| Relationship verb phrase
entity-B |
o
key-Attribute-B
*Z Child Entity’

key-Attribute-A (FK)

aThe parent entity in a mandatory (total) nonidentifying relationship may be an identifier-
independent entity (as shown) or an identifier-dependent entity if it is a child entity in some
identifying relationship.

bThe child entity in a mandatory (total) nonidentifying relationship will be an identifier-
independent entity (as shown) unless it is also a child entity in some identifying relationship.

Figure 89—Mandatory (total) nonidentifying relationship syntax
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9.5.2.5 Optional nonidentifying relationship

a)

b)

d)

A dashed line with a small diamond at the parent end shall depict an optional nonidentifying
relationship between the parent and child entities (see Figure 90).

entity-A

key-Attribute-A

Parent Entity”
Partial Nonidentifying
Relationship
| Relatlonshlp verb phrase
entity-B |
key-Attribute-B
<z Child Entity®

key-Attribute-A (FK)

3The parent entity in an optional (partial) nonidentifying relationship may be an identifier-
independent entity (as shown) or an identifier-dependent entity if it is a child entity in some
identifying relationship.

bThe child entity in an optional (partial) nonidentifying relationship will be an identifier-inde-
pendent entity (as shown) unless it is also a child entity in some identifying relationship.

Figure 90—Optional (partial) nonidentifying relationship syntax

In an optional nonidentifying relationship, each instance of the child entity shall be related to zero or
one instances of the parent entity.

An optiona nonidentifying relationship shall represent a conditional existence dependency. An
instance of the child in which each foreign key attribute for the relationship has avalue shall have an
associated parent instance in which the primary key attributes of the parent are equal in value to the
foreign key attributes of the child.

An optional nonidentifying relationship shall have asmall diamond on the relationship line adjacent
to the parent entity rectangle (see Figure 90).

9.5.2.6 Labeling

a)
b)

0)

A relationship shall be given a name, expressed as a verb or verb phrase that is placed with the
relationship line.

The name of each relationship between the same two entities shall be unique, but a relationship
name need not be unique across the model.

The name for a relationship should usually be expressed in the parent-to-child direction such that a
sentence can be formed by combining the parent entity name, the relationship verb phrase, a
cardinality expression, and the child entity name.

For example, the statement “ A project funds one or more tasks’ could be derived from arelationship
showing project asthe parent entity, task asthe child entity with a“p” cardinality symbol, and
“funds” astherelationship verb phrase.
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d)

e

f)

h)

When a relationship is hamed from both the parent and child perspectives, the parent perspective

shall be stated first, followed by the symbol “/” and then the child perspective.

The relationship shall be required to hold true when stated from the reverse direction, even if the

child-to-parent relationship is not named explicitly.

From the previous example, it is inferred that “a task is funded by exactly one project.” The child

perspective hereisrepresented as“is funded by.” Thefull relationship label for this example,

including both parent and child perspectives, would be“ funds/is funded by.”

The parent perspective relationship verb phrase should be stated for all relationships.2

A nonspecific relationship is typically named in both directions (see Figure 91). For a nonspecific

relationship, the relationship label shall be expressed as a pair of verb phrases placed beside the

relationship line and separated by aslash (“ /).

Since a nonspecific relationship has no notion of “parent” or “child” roles, the order of the verb

phrases shall depend on the relative position of the entities, as follows:

1) Thefirst shall express the relationship from either the left entity to the right entity (if the enti-
ties are arranged horizontally) or the top entity to the bottom entity (if they are arranged verti-
caly).

2) The second portion of the relationship label shall express the relationship from the other direc-
tion, that is, either the right entity to the left entity or the bottom entity to the top entity, again
depending on the orientation.

3) Top-to-bottom orientation shall take precedence over left-to-right, so if the entities are arranged
upper right and lower |eft, the first verb phrase describes the relationship from the perspective
of the top entity.

For a nonspecific relationship, the relationship shall be labeled so that sentences can be formed by

combining the entity names with the phrases.

For example, the statements “A project has zero, one, or more employees’ and “An employee is

assigned zero, one, or more projects’ can be derived from a nonspecific relationship labeled “has/

is assigned” betweentheentitiesproject and employee. (The sequence assumes the entity
project appears above or to the left of the entity employee.)

9.5.3 Relationship rules

9.5.3.1 Composition

a)
b)
<)
d)

e

A relationship is always between exactly two entities.

These two related entities need not be distinct.

An entity may be associated with any number of other entities, as either a child or a parent.
Aninstance of aparent entity may be associated with zero, one, or more instances of the child entity,
depending on the specified cardinality.

In a nonspecific relationship, an instance of either entity may be associated with zero, one, or more
instances of the other entity, depending on the specified cardinality of each.

9.5.3.2 Identifying relationship/nonidentifying relationship

a)

b)

0)

A relationship may be classified as one of the following:

1) Anidentifying relationship, or

2) A mandatory (total) nonidentifying relationship, or

3) Anoptiona (partial) nonidentifying relationship.

A nonidentifying relationship and a nonspecific relationship may be recursive, i.e., relating an
instance of an entity to another instance of the same entity.

An identifying relationship may not be recursive.

86The second method of naming the relationship from the child perspective, i.e., using the direct object of the phrase in place of the
entire verb phrase asin [B13], has been dropped from this standard.
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relationship of A to B

entity-A \ entity-B

verb phrase /
L

verb phrase

relationship of Bto A

entity-C

relationship of C to D

e

verb phrase /
verb phrase

entity-D \

relationship of D to C

Figure 91—Nonspecific relationship syntax

9.5.3.3 Total relationship/partial relationship

a)
b)

<)
d)

In an identifying relationship, a child entity instance shall be associated with exactly one instance of
its parent entity.

In atotal (mandatory) nonidentifying relationship, a child entity instance shall be associated with
exactly oneinstance of its parent entity.

Only a nonidentifying relationship may be partial, i.e., optional from the perspective of the child.

Inapartia relationship, achild entity instance shall be associated with either zero or one instance of
its parent entity.

9.5.3.4 Independent entity/dependent entity

a)
b)

<)
d)

e

f)

If an entire foreign key is used for all or part of an entity’s primary key, then the entity shall be
classified as dependent.

If only a portion of aforeign key, or no foreign key attribute at al, is used for an entity’s primary
key, then the entity shall be classified as independent.

The child entity in an identifying relationship shall always be a dependent entity.

The child entity in a nonidentifying relationship shall be an independent entity unless the entity is
also a child entity in some identifying relationship.

The parent entity in an identifying relationship shall be an independent entity unless it is also the
child entity in some other identifying relationship.

In other than an entity-relationship level view, a category (subclass) shall always be classified as a
dependent entity.
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g) A category entity may not be a child in an identifying relationship unless the primary key
contributed by that relationship is already completely contained within the primary key of the
category entity.

9.5.3.5 Cyclic relationships

a) Relationship cycles are allowed; however, the cycle shall include at least one nonidentifying
relationship.

9.5.3.6 Relationship label

a) Relationship labels (providing the forward and reverse verb phrases) shall be optiona (although
they should be used for clarity).
b) When aforward verb phrase is omitted, “has’ should be used to read the relationship.

9.6 Entity generalization

A generalization structure (categorization structure) is used to represent a situation in which an entity isa
type (category) of another entity. Generalization of value classesis discussed in 5.3. Generalization and cat-
egorization in key-style and identity-style views are based on the same basic principle. In key-style views,
however, generalization is based only on common attributes and relationships; no behavior is represented in
the views.

9.6.1 Entity generalization semantics
9.6.1.1 Generalization structure

Entities are used to represent the notion of “things about which we need information.” Since some real world
things are categories of other real world things, some entities must, in some sense, be categories of other
entities. For example, suppose employees are something about which information is needed. Although there
is some information needed about al employees, additional information may be needed about salaried
employees that is different, from the additional information needed about hourly employees. Therefore, the
entities salaried-Employee and hourly-Employee are categories of the entity employee. Inan
IDEF1X view, these entities may be arranged in a generalization structure. A generalization structure is an
identity connection between one entity, referred to as the generic entity, and another entity, referred to as a
category entity.

In another case, a category entity may be needed to express arelationship that isvalid for only a specific cat-
egory or to document the relationship differences among the various categories of the entity. For example, a
full-Time-Employee may quaify for abenefit, whileapart-Time-Employee may not.

9.6.1.2 Category cluster

A category cluster is a set of one or more generalization structures having a common generic entity. An
instance of the generic entity may be an instance of at most one of the category entities in the cluster, and
each instance of a category entity is exactly one instance of the generic entity. Each instance of the category
entity represents the same real-world thing as its associated instance in the generic entity. From the previous
example, employee isthe generic entity and salaried-Employee and hourly-Employee arethe
category entities. There are two generalization structuresin this cluster, one between employee and sal-
aried-Employee and one between employee and hourly-Employee.

Since an instance of the generic entity may not be an instance of more than one of the category entitiesin the
cluster, the category entities are mutually exclusive. In the example, this rule implies that an employee can-
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not be both salaried and hourly. However, an entity may be the generic entity in more than one category clus-
ter, and the category entities in one cluster are not mutually exclusive with those in others. For example,
employee could be the generic entity in a second category cluster with full-Time-Employee and
part-Time-Employee asthe category entities. An instance of employee could be associated with an
instance of either salaried-Employee Or hourly-Employee and with an instance of either full-
Time-Employee OF part-Time-Employee. An instance may change its category without violating
any language rules, for example, a full-time employee might begin working part time.

9.6.1.3 Complete/incomplete

In a complete category cluster, every instance of the generic entity is associated with an instance of a cate-
gory entity shown in the view, i.e., al the possible categories are present. In the example, each employeeis
either full time or part time, so the second cluster is complete. In an incomplete category cluster, an instance
of the generic entity may exist without being an instance of any of the category entities shown in the view,
i.e.,, some categories are omitted from the view. For example, if some employees are paid commissions
rather than an hourly wage or salary, the first category cluster would be incomplete.8”

Although the generalization structures themselves are not named explicitly, each generic entity to category
entity structure can beread as“can be” For example, “an employee canbeasalaried-Employee.” If
the cluster is complete, each structure may be read as “must be.” For example, “an employee must be a
full-Time-Employee OF part-Time-Employee.” The structure is read as “is alan” from the
reverse direction. For example, “an hourly-Employee isan employee.”

9.6.1.4 Discriminator

An attribute in the generic entity, or in one of its generic ancestors, may be designated as the discriminator
for a specific category cluster of that entity. A discriminator is an attribute whose val ue determines the cate-
gory of an instance of the generic. The values of the discriminator are one-to-one equivalent to the names of
the category entities. In the previous example, the discriminator for the cluster including the salaried and
hourly categories might be named employee-Pay-Type. If acluster has adiscriminator, that discrimina-
tor must be distinct from all other discriminators in the generic.

9.6.2 Entity generalization syntax
9.6.2.1 Category cluster

a) A category cluster shall be shown as a line extending from the generic entity to a circle that is
underlined. Separate lines shall extend from the underlined circle to each of the category entitiesin
the cluster. Each line pair, from the generic entity to the circle and from the circle to the category
entity, shall represent one of the generalization structures in the cluster (see Figure 92 and Figure
93).

b) Category entities shall always be identifier-dependent.

c¢) Thegeneric entity shall beindependent unlessitsidentifier has migrated through some relationship.

9.6.2.2 Complete/incomplete cluster

a) If the category cluster circle has a double underline, it shall indicate that the set of category entities
is complete (see Figure 92).

b) A single line under the category cluster circle shall indicate an incomplete set of categories (see
Figure 93).

8Thes ngle and double underline notation has a different meaning for key-style and identity-style views. In an identity-style view, the
double underline indicates an abstract class, one in which each instance must also be an instance of one of the subtypes (categories). In
an identity-style view, the double underline does not mean that all categories are displayed in the view, only that the class is abstract.
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"= *Generic Entity

Complete set of categories . ™ @iscﬁmimtor
I T I
O OC )

** Category Entities

*The generic entity may be an identifier-independent entity (as shown) or an identifier-
dependent entity depending on its relationships.

**Category entities will always be identifier-dependent entities.

Figure 92—Complete categorization structure syntax

9.6.2.3 Discriminator

a) If acategory cluster has a discriminator, the name of the discriminator attribute shall be written with
the category cluster circle.

9.6.3 Entity generalization rules
9.6.3.1 Generalization taxonomy

a) A category entity may have only one generic entity, i.e., it may only be a member of the set of
categories for one category cluster.8

b) A category entity in one categorization structure may be a generic entity in another categorization
structure.

¢) Anentity may have any number of category clustersin which it is the generic entity.
9.6.3.2 Category primary key

a) Theprimary key attribute(s) of a category entity shall be the same as the primary key attribute(s) of
the generic entity. However, attribute role names may be assigned in the category entity.

b) A category entity may not be a child entity in an identifying relationship unless the primary key
contributed by the identifying relationship is already completely contained within the primary key of
the category.

88while multi ple inheritance is supported for identity-style views, only single inheritance is available within key-style views.
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* ~~__*QGeneric Entity

Discriminator

COC D
~

** Category Entities

*The generic entity may be an identifier-independent entity (as shown) or an identifier-
dependent entity depending on its relationships.

**Category entities will always be identifier-dependent entities.

Figure 93—Incomplete categorization structure syntax

9.6.3.3 Generic ancestor

a) No entity may be its own generic ancestor, that is, no entity may have itself as a parent in a
categorization structure, nor may it participate in any series of categorization structures that
specifiesacycle.

9.6.3.4 Discriminator

a) If adiscriminator isassigned,
1) All instances of acategory entity shall have the same discriminator value, and
2) Allinstances of different categories shall have different discriminator values.

b)  No two category clusters of ageneric entity may have the same discriminator.

¢) Thediscriminator (if any) of a complete category cluster may not be an optional attribute.

d) Thevalues of the discriminator (if any) of a complete category cluster shall correspond one-to-one
to the names of the categoriesin the cluster.

€) Thevalues of the discriminator (if any) of an incomplete category cluster shall correspond one-to-
one to the names of the categories shown for the cluster; however, additional values are permitted,
corresponding to the names of categories not shown.
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9.7 Primary and alternate key

A key, either primary or alternate, represents a uniqueness constraint over the values of properties. Unique-
ness constraints were expressed as primary keys and alternate keys in earlier versions of IDEF1X because
these versions did not include the notion of identi ty.89 When the concept of identity isnot available, aprecise
specification of distinct instance must use attributes; there is nothing else to use. Without identity, a simple
way to state what distinct instance means is in terms of a uniqueness constraint over attributes that have a
value for every instance—in other words, a primary key constraint. Key-style modeling continues to support
the use of primary and alternate keys.

9.7.1 Primary and alternate key semantics
9.7.1.1 Primary key

The notion that instances must not agree on all attribute values was made precise in the original versions of
IDEF1X with aprimary key constraint. In practice, a constraint like the primary key constraint often occurs
as a business rule. For example, customer numbers are assigned with the intent that they uniquely identify
customers. If a uniqueness constraint reflects a business rule or is inherent in the sense of the entity, that
unigqueness constraint should be stated.

9.7.1.2 Candidate key

A candidate key of an entity consists of one or more attributes for which no two instances of the entity will
agree on the values. For example, the attribute purchase-Order-Identifier may uniquely identify
an instance of the entity purchase-Order. A combination of the attributes account-Identifier
and check-TIdentifier may uniquely identify an instance of the entity check.

In key-based and fully attributed views, every entity must have at |east one candidate key. In some cases, an
entity may have more than one candidate key. For example, the attributes employee-Id and social-

Security-Nbr may both uniquely identify an instance of the entity employee. A candidate key may
include attributes that have no value in certain instances. Such a candidate may not be chosen as the primary

key.
9.7.1.3 Alternate key
When more than one candidate key exists, then one candidate key is designated as the primary key and each
other candidate key is designated an alternate key (AK). If only one candidate key exists, then it is the pri-
mary key.
9.7.2 Primary and alternate key syntax
9.7.2.1 Primary key
a) Attributes that compose the primary key of an entity shall be placed at the top of the attribute list
within the entity rectangle.
b) Attributes that compose the primary key of an entity shall be separated from the nonprimary key
attributes by a horizontal line (see Figures 87 and 94).
9.7.2.2 Alternate key
a) Andternate key shall be assigned a unique integer number.

89| identity-style modeling, a unicueness constraint is treated as simply another kind of constraint.
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b) An aternate key shall be shown by placing 2K plus the alternate key number in parentheses to the
right of the attribute name, e.g., (AK1), asshown in Figure 94.
¢) Anindividua attribute may be identified as part of more than one alternate key.
d) A primary key attribute may also serve as part of an aternate key.

Alternate Key Syntax

attribute-Name (AKn)[ (AKm). . .]
or
attribute-Name (AKn[, AKm. . .])

where n, m, etc., uniquely identify each Alternate Key
that includes the associated attributes, and where

an Alternate Key consists of all the attributes with
the same identifier.

Example
employee
Primary Key
employee-Id -
Alternate Key #1
social-Security-Nbr (AK1) -
name (AK2) -y |
) —— Alternate Key #2
birth-Date (AK2) -

Figure 94—Alternate key syntax

9.7.3 Primary and alternate key rules

9.7.3.1 Primary key/alternate key composition

f)
0)
h)

In akey-based or fully attributed view, every entity shall have a primary key.

In addition to a primary key, an entity may have one or more alternate keys specified.

A key (primary or aternate) may consist of asingle attribute or combination of attributes.

Each instance of the entity shall have avalue for each attribute included in the primary key.

An individua attribute may be part of more than one key (primary or aternate). This rule includes
the case of aprimary key attribute also serving as part of an alternate key. Thisrule includesthe case
of aforeign key (migrated) attribute being part of an aternate key.

A key (primary or alternate) shall contain only those attributes that contribute to the entity’ s unique
identification.

If aprimary key is composed of more than one attribute, the value of every nonkey attribute shall be
functionally dependent upon the entire primary key.

Attributes that form primary and alternate keys of an entity shall either be owned by the entity or
migrated through a relationship (see 9.8).

Every attribute that is not part of akey (primary or aternate) shall be functionally dependent only
upon the primary key and each of the alternate keys. In other words, no such attribute’ s value may
be determined by another such attribute’ s value.

9.7.3.2 Primary key/alternate key optionality

a)

Each attribute specified as part of a primary key shall have avalue.
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b)  An attribute specified as part of an alternate key may have no value.
9.7.3.3 Primary keys in generalization structures

a) A category entity shall have the same primary key asits generic entity.

9.8 Foreign key

A foreign key is an attribute or group of attributes in an entity that designates an instance of a related entity.
Foreign keys were originally made a part of the IDEF1X notions of relationship and generalization because
they were at the time the most definite, well-defined, and easily understood way to specify precisely what
relationship and generalization meant. For example, the use of foreign keys permitted sample instance tables
to be drawn in a clear and consistent way.

The concepts of relationship and generalization were made precise with foreign keys in earlier versions of
IDEF1X. When identity is not available, a precise specification of relationship must use attributes; there is
nothing else to use. Without identity, the only real choice was to express relationships in terms of foreign
keys or to leave it unspecified. Key-style modeling continues to support the use of foreign keys.

9.8.1 Foreign key semantics

In key-style views, relationships and generalization structures are expressed using foreign keys. If arelation-
ship or generalization structure exists between two entities, then all the attributes that form the primary key
of the parent or generic entity are migrated as attributes of the child entity or inherited as attributes of the
category entity. These attributes are referred to as foreign key attributes.

For example, if arelationship exists between the entity project asaparent and the entity task asachild,
then the primary key attributes of project will beforeign key (migrated) attributes of the entity task. In
this example, if the attribute project-1d isthe primary key of project, then project-1d will aso
be aforeign key (migrated) attribute of task.

9.8.1.1 Foreign keys in generalization structures

In a generalization structure, both the generic entity and the category entity represent the same real-world
thing. Therefore, the primary key for each category entity is inherited through the generalization structure
from the primary key of the generic entity. For example, if salaried-Employee isacategory entity of
the generic entity employee and the attribute employee-1Id is the primary key for the entity
employee, the attribute employee-1d will aso bethe primary key for salaried-Employee.

9.8.1.2 Foreign keys in relationships

A foreign key attribute may be used as either a partial or complete primary key, as an alternate key, or as a
nonkey attribute within an entity. If all the primary key attributes of a parent entity are migrated as part of the
primary key of the child entity, then the relationship through which the attributes were migrated is an identi-
fying relationship. If any of the migrated attributes are not part of the primary key of the child entity, then the
relationship is a nonidentifying relationship (see 9.5.1).

For example, if tasks are only uniquely numbered within a project, then the migrated attribute project-
Id will be combined with the owned attribute task-Id to specify the primary key of task. The entity
project will have an identifying relationship with the entity task. If on the other hand, the attribute
task-Id isaways unique, even across projects, then the migrated attribute project-1d will be a non-
key attribute of the entity task. In this case, the entity project will have a nonidentifying relationship
with the entity task.
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When only a portion of amigrated primary key becomes part of the primary key of the child entity, with the
remainder becoming nonkey attribute(s) of the child, the contributed foreign key is called asplit key. If akey
is split, the relationship is nonidentifying.

9.8.1.3 Multiple relationships

In some cases, a child entity may have multiple relationships to the same parent entity. The primary key of
the parent entity will appear as a foreign key attribute in the child entity for each relationship. For a given
instance of the child entity, the values of the migrated attributes may be different for each relationship, i.e.,
two different instances of the parent entity may be referenced. A bill of materials structure, for example, can
be represented by two entities part and assembly-Structure (see Figure 96). In this example, the
entity part hasadual relationship as aparent entity to the entity assembly-Structure. The same part
sometimes acts as a component from which assemblies are made, i.e., a part may be a component in one or
more assemblies, and sometimes it acts as an assembly that itself has one or more component parts. If the
primary key for the entity part is part-Nbr, then part-Nbr will appear twice in the entity assem-
bly-Structure asamigrated attribute. However, since an attribute of a given name may appear only
once in any entity, the two occurrences of part-Nbr in assembly-Structure are merged unless a
role nameis assigned to one or both.

9.8.1.4 Role naming

When the same foreign key attribute migrates into an entity through more than one relationship or is inher-
ited through a generalization structure, a role name may need to be assigned to each occurrence to distin-
guish among them. If an instance of the entity can have one value for one occurrence and a different value
for another occurrence, then each occurrence of the migrated attribute must have a different name. Typically,
each occurrence is given a role name athough one occurrence may retain the name of its primary key
source.

On the other hand, if each instance of the entity must have the same value for two or more migrated attribute
occurrences, each occurrence of the migrated attribute must have the same name. In Figure 96, role names of
component-Nbr and assembly-Nbr have been assigned to distinguish between the two migrated
attribute occurrences of part-Nbr.

Attribute role naming may also be used with a single occurrence of a migrated (inherited) foreign key
attribute. Although not required in this circumstance, a role name may convey more precisely the attribute’s
meaning (i.e., clarify theroleit plays) within the context of the entity.

9.8.2 Foreign key syntax
9.8.2.1 Foreign key representation

a) A foreign key shall be depicted by placing the names of each foreign key attribute inside the entity
rectangle.

b) Each foreign key attribute label shall consist of the attribute name followed with the letters FK in
parentheses, i.e., (FK), asshown in Figure 95.

¢) If any foreign key attribute does not belong to the primary key of the child entity, the attribute shall
be placed below the line, and the entity shall be classified as identifier-independent with respect to
this relationship (see 9.5).

d) If al migrated attributes belong to the primary key of the child entity,
1) Each shal be placed above the horizontal line, and
2) Theentity rectangle shall be drawn with rounded cornersto indicate that the identifier (primary

key) of the entity is dependent upon an attribute migrated through a relationship.
e) A foreign key (migrated) attribute may be part of an alternate key.
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Migrated Nonkey Attribute Example

employee

employee-Nbr

Foreign
Key < | dept-Nbr (FK)

Migrated Primary Key Attribute Example

purchase-Order-Item

Foreign hase-Order-Nb
purchase-Order-Nbr (FK)
Key s>
item-Nbr

. )

Figure 95—Foreign key syntax

9.8.2.2 Role naming

a)

b)

When an attribute label contains arole name,
1) Therole name shall precede the foreign key attribute name, and

2) A period (*.") shall be used to separate the role name and the original name, with no spaces
immediately before or after the period (see Figure 96).

When an attribute with arole name is migrated or inherited into another entity, only the role name
shall be displayed in that entity.

9.8.3 Foreign key rules

9.8.3.1 Primary key/foreign key correspondence

a)
b)

0)

Every primary key attribute of a parent entity in a relationship shall be a foreign key (migrated)
attribute in the related child entity.

Every primary key attribute of a generic entity in a generalization structure shall be a foreign key
(inherited) attribute in the related category entity.

Every primary key attribute of a generic entity in a generalization structure shall be part of the
category entity’s primary key.

9.8.3.2 Foreign key/primary key correspondence

a)
b)

0

d)

186

An entity shall contain a set of foreign key attributes for each relationship in which it is the child.

An entity shall contain a set of foreign key attributes for the generalization structure in which it is
the category entity.

Every foreign key attribute of a child or category entity shall represent an attribute in the primary
key of arelated parent or generic entity.

Every foreign key attribute shall reference one and only one of the primary key attributes of the
parent. An attribute a references another attribute b if a = b or a isadirect or indirect subtype of
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Role Name Syntax:
role-Name.attribute-Name (FK)
Example

part

part-Nbr

is assembled

is component from

m

Migrated attribute name

assembly-Structure

component-Nbr.part-Nbr (FK) /
/ assembly-Nbr.part-Nbr (FK)

Figure 96—Key-style role name syntax

Role name

b. An attribute a is considered a subtype of b if a isan aiasfor ¢ and c isasubtypeof b, or aisa
subtype of ¢ and c isan aliasfor b.%°

€) A child entity may not contain two entire foreign keys identifying the same instance of the same
ancestor (parent or generic) for every instance of the child unless these foreign keys are contributed
via separate relationship paths containing one or more intervening entities between the ancestor and
the child (see dso0 9.9).

f) A foreign key attribute may be part of more than one foreign key provided that the attribute always
has the same value for these foreign keysin any given instance of the entity.

g) The number of attributes in the set of foreign key attributes shall be the same as the number of
attributes of the primary key of the parent or generic entity.

9.8.3.3 Naming/role naming

a) Thename of aforeign key attribute may be
1) Arolename,
2) Anadliasfor arole name, or
3) Thesame name asthe original (owned) attribute in the related entity.

b) Each role name assigned to a foreign key attribute shall be unique within the view. However, the
same role name may be assigned to multiple foreign key attributes to state a common ancestor
constraint, as described in 9.9.

c) A rolename shall be avalue class name and, as such, shall be a noun phrase.
d) A role name shall conform to the naming rules of avalue class name.

9OTheintent of this ruleis that for every role name it be clear exactly what it is arole name for.
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9.9 Common ancestor constraint

The constraint language is used to state constraints in identity-style modeling. Without this language, many
constraints cannot be stated formally in key-style modeling; notes are used instead to provide informal state-
ments of these constraints. However, one type of constraint that can be stated in a key-style view is the com-
mon ancestor constraint.

A common ancestor constraint is expressed by the use of foreign keys and (possibly) role names for foreign
keyswith constraint notes,®! asillustrated in Figures 98 through 100. This discussion is presented to support
those continuing to use foreign keys and wishing to express common ancestor constraints in the key-style
manner.

9.9.1 Common ancestor constraint semantics

A common ancestor constraint involves two or more paths between a child entity and one of its ancestors.
Each path isarelationship or generalization (or a series of such relationships) in which the child in oneisthe
parent in the next.

For example, if ahotel entity hastwo child entities, room and t v, and each of these has a common child
caled tv-In-A-Room, then there are two paths between hotel and tv-In-A-Room, one through
room and one through tv. A common ancestor constraint describes a restriction on the instances of the
ancestor entity (e.g., hotel) to which each instance of the descendent entity (e.g., tv—-In-A-Room) may
be related. A common ancestor constraint can state that either a descendent instance must be related to the
same ancestor instance through each path, or that it must be related to a different ancestor instance through
each path.

hotel
hotel-1d
owns
contains
room
Fotel-ld (FK) hotel-1d (FK)
room-Nbr tv-Nbr
- J
contains located

tv-In-A-Room

hotel-Id (FK)
room-Nbr (FK)
tv-Nbr (FK)

- /

Figure 97—Common ancestor required to be the same

) denti ty-style modeling uses the constraint language to state such business rules. The two are equivalent. For example, in key-style
modeling the standard meaning of a single foreign key in a child having a common ancestor implies the following constraint: for a tv-
in-a-room, the hotel that contains the room must be the hotel that owns the tv. In identity-style modeling, this constraint would be
declared explicitly. The specification language to state this constraint is given in 6.7. Common ancestor constraints can be detected syn-
tactically in akey-style view based upon the definitions of relationships, foreign keys, role names, and value class hierarchy. The corre-
sponding constraint for an identity-style view can, therefore, be generated automatically.
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In the example above, a common ancestor constraint might state that “the hotel that contains the room must
be the hotel that ownsthe TV,” i.e., atv-In-A-Room instance must berelated to the ssme hotel instance
through both paths. The view that expresses this constraint is shown in Figure 97.

On the other hand, an aternative (perhaps nonsensical) distinct ancestor constraint could say “hotels cannot

use TVs that belong to them,” i.e, a tv-In-A-Room instance must be related to a different hotel
instance through each path. The view that expresses this constraint is shown in Figure 98.

contains
room
ﬁlotel-ld (FK) w
room-Nbr
U /

contains

hotel
hotel-Id

owns

hotel-Id (FK)
tv-Nbr

located

tv-In-A-Room

containing-Hotel.hotel-Id (FK) (1)
room-Nbr (FK)
owning-Hotel.hotel-Id (FK) (1)
tv-Nbr (FK)

- /

Figure 98—Distinct ancestor

1. containing-Hotel must
not equal owning-Hotel.

In this example, the third possibility is that “ hotels can use TV s belonging to any hotel.” This example would
imply that the related instances of hotel may be either the same or different. Since thereis no restriction in
this situation, no common ancestor constraint note is needed.

9.9.2 Common ancestor constraint syntax

There is no specific syntax for expressing a key-style common ancestor constraint, other than correct use of
the involved modeling constructs.

9.9.3 Common ancestor constraint rules
9.9.3.1 Nonidentifying relationship

a) If any of the paths includes a nonidentifying relationship, a note should be used to record the con-
straint, as shown in Figure 100.

9.9.3.2 Identifying relationship
However, if each of the path segments is an identifying relationship, then the primary key of the ancestor
entity will migrate all the way to the descendent entity along all paths, resulting in multiple occurrences of

the migrated attribute in the descendent (see, for example, Figure 97). In this case, role names may be
needed in conjunction with the common ancestor constraint. There are four possible situations:
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hotel
hotel-Id
owns
contains
room
hotel-I1d (FK) hotel-1d (FK)
room-Nbr tv-Nbr
\ J
contains located
tv-In-A-Room

containing-Hotel.hotel-Id (FK)
room-Nbr (FK)

owning-Hotel.hotel-1d (FK)
tv-Nbr (FK)

- /

Figure 99—Common ancestor with no restriction

hotel
hotel-1d
owns
— —
contains |
room tv ‘
hotel-Id (FK) tv-Nbr
room-Nbr howl1d GK)
t -
g — ote
\ 7
\  contains (1) /
\ / located (1)
\ tv-In-A-Room /
\ /
assignment-Id /
hOtEI'IIilIb(FKF)K " 1. The hotel that contains
i\??l\l;gr (IfK() ) the room must be the hotel
hours-used that owns the tv.

Figure 100—Common ancestor constraint note

a) The business rule states that the ancestor instances must aways be the same. This rule means a
descendent instance must be related to the same ancestor instance through all paths. In this situation,
either
1) Norole names shall be assigned, or

2) Thesamerole name shall be assigned to all occurrences of the migrated attribute in the descen-
dent entity.
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Giving the same role name to all occurrences is sufficient to express the common ancestor
constraint, so aconstraint note is not needed. Thissituation isillustrated in Figure 97, corresponding
to the identity-style constraint example shown in Figure 70.

b) The business rule states that the ancestor instances must aways be different. This rule means a
descendent instance must be related to a different ancestor instance through each path. In this
situation,

1) A different role name shall be assigned to each occurrence of the migrated attribute in the
descendent, and

2) A common ancestor constraint note shall be added, stating that the values must be different.

This situation isillustrated in Figure 98.

¢) Thebusinessrule statesthat all of the ancestor instances may be the same or may be different. In this
situation,

1) A different role name shall be assighed to each occurrence of the migrated attribute in the
descendent, but

2) No common ancestor constraint note need be added.

Common ancestor constraint notes are not needed in this case because giving the occurrences

different role names alows, but does not require, their values to be different. This situation is

illustrated in Figure 99.

d) The business rule states that some of the ancestor instances may be the same or may be different,
and others must be the same or must be different. In this case, multiple common ancestor constraints
shall be stated, one for each of the situations described above.

9.10 Key-style view level

A literal trandation of key-style view levels to identity-style view levels by a direct mapping of modeling
construct is not possible because the goals of a modeling style determine the constructs. For example, iden-
tity-style modeling focuses on behavior as well as structure, and different constructs may be needed at dif-
ferent levelsto assist in reasoning about factors important at that point in time.

The modeling style (key style or identity style) determines which variation of level applies. However, the
fundamental notion of view levels is the same for both key- and identity-styles. Each level is intended to be
distinct, defined in terms of the modeling constructs to be used. Any view isto be clearly at onelevel. Thisis
done for two reasons. First, limiting each level to the appropriate set of modeling constructs promotes mod-
eling what is appropriate to the level and only what is appropriate to the level. Second, having distinct levels
provides a clear work product definition for management.

There are four levelsin key-style modeling.%? Like the levels of identity-style views (see 8.2), each key-style
view level must balance the admittedly conflicting goals of any view: be understandable to users and be use-
ful to developers. The three conceptual schemalevels of key-style modeling—entity-relationship, key-based,
and fully attributed—differ in the syntax and semantics that each allows. The primary differences are;

a)  Entity-relationship views specify no keys.
b) Key-based views specify keys and some nonkey attributes.
¢) Fully attributed views specify keys and al nonkey attributes.

These three view levels provide the structural information needed to design efficient databases for a physical
system. At afourth level, the key-style graphic syntax is often used informally to describe the physical data-
base structure. This level can be very useful in re-engineering current systems and provides a method for
deriving data structure descriptions from existing data resources.

92506 Annex B for acomparison of identity-style and key-style concepts and constructs.
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The views in adjacent levels relate to each other by a mapping (transformation). The mapping is enabled by
employing a consistent set of modeling concepts. Levels do not imply a particular pattern of development,
e.g., waterfal, iterative, or fountain. The methodological development pattern determines the scope of the
views and the order in which they are produced, but not their content. The content of a level is independent
of the methodological development pattern. Table 15 summarizes the levels of key-style modeling.

Table 15—Summary of levels (key style)

Leve of view Characteristic modeling constructs Primary intent
1 Entities, relationships, illustrative attributes Specification and management of major
areas of reusable assets and the applica-
(Entity relationship level) tions and projects that use them.
2 Entity-relationship level plus keysand illustrative | Architecture and integration of features,
attributes prototypes, and releases within aproject as
well as across projects and applications.
(Key-based level)
3 Key-based level plusall attributes Complete specification of al semanticsfor
aproject or project release, independent of
(Fully attributed level) the implementation platform.
Technology- Database specifications Complete specification in terms of imple-
dependent levels mentation platform constructs.
(Implementation level) May include multiple additional levels

such as transform and implementation.

9.10.1 Key-style view level semantics
9.10.1.1 Level 1 (entity-relationship level)

An entity-relationship level view contains entities and rel ationships between entities. It may depict attributes
for purposes of illustrating the nature of an entity.

This level may not contain any key declarations (primary, alternate, or foreign). Since an entity-relationship
level view does not specify any keys, entities need not be distinguished as being dependent or independent,
and relationships need not be distinguished as being identifying or nonidentifying. An entity-relationship
level view may contain many-to-many (nonspecific) relationships.

9.10.1.2 Level 2 (key-based level)

The key-based level supports representation and reasoning about the most important concepts in the area of
interest. The entities in this level are generalizations or other important, discovered entities—at least ini-
tially. An entity is “discovered” in the sense that it represents a concept already present in the minds of the
people who understand the area. Key-based level views also include entities that have been “invented” (typi-
cally by abstracting from the discovered entities) to promote system resiliency in the face of change.

Key-based level views must be specific enough to support technical integration decisions. This level pro-
vides a consistent key structure, which is a prerequisite for integrated databases. This level isin many ways
the most important and the most difficult. It requires deep insights into the needs of the enterprise and the
rare technical ability to be both abstract and precise.

When fully attributed views are available over the scope of the key-based views, the key-based views can be
updated to include all the entities, attributes, and relationships important to integration and reuse.
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9.10.1.3 Level 3 (fully attributed level)

The fully attributed level completely specifies al entities. The fully attributed view begins as a subset view
of akey-based view. All attributes are added.

9.10.1.4 Level 4 (implementation level)

The implementation level includes all entities needed for implementation of the fully attributed view on the
chosen platform.% The implementation level view typically begins with a default transformation of the fully
attributed level entities. The same considerations discussed in 8.2 for the Level 4 identity-style view apply to
the key-style implementation level. Some rules enforced in Level 3 views may not be enforced at Level 4.
For example, aLevel 4 view will often show data redundancy that exists in an implemented system.

9.10.2 Key-style view level syntax
9.10.2.1 Level 1 (entity-relationship level)
a) Inan entity-relationship level view, arelationship may be shown as either a solid or dashed line. At

thislevel, solid and dashed lines are considered equivalent since no keys are expressed.

b) In an entity-relationship level view, an entity rectangle may not include an internal horizontal line
(i.e., as used to separate the primary keys from the nonkey propertiesin other level key-style views)
since no keys are expressed.

9.10.2.2 Level 2 (key-based level)
a) In a key-based level view, a relationship shal be shown as either a solid line (identifying

relationship) or dashed line (nonidentifying relationship).

b) In a key-based level view, an entity rectangle shall include an internal horizonta line, used to
separate the primary key attribute from the non-primary-key properties.

¢) In a key-based level view, an entity rectangle shall be designated as either independent or
dependent.
9.10.2.3 Level 3 (fully attributed level)
a) A fully attributed level view shall have the same display requirements as a key-based level view.

9.10.2.4 Level 4 (implementation level)

Data Definition Language (DDL) code is atextual form of the database management system (DBMS) view.
The syntax is specific to each implementation platform and is not covered by this standard.

9.10.3 Key-style view level rules

Table 16 summarizes the modeling constructs appropriate to the various levels. The Implementation Level is
part of afuture version of this standard.

93This level was not defined in [B13].
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Table 16—View levels and content

Level
Construct Entity-relationship Key-based Fully attributed

Entities Yes Yes Yes

Relationships Yes Yes (ho many-to-many) Yes (ho many-to-many)
Generalizations Yes Yes Yes

Primary keys No (see Note) Yes Yes

Alternate keys No (see Note) Yes Yes

Foreign keys No (see Note) Yes Yes

Nonkey attributes Typically, no (see Note) Some Yes

Notes Yes Yes Yes

Normalized? No Yes Yes

NOTE—Attributes are not distinguished as key or nonkey and are allowed, but not required, in entity-relationship
level views. Optionality is not specified.

9.10.3.1 Level 1 (entity-relationship level)

Some of the rules described in previous sections do not apply to all levels of views. The following exceptions
are made for entity-relationship level views.

An entity need not have any attributes specified.

Entities do not have primary or alternate keys specified.

No entity has any migrated attributes (i.e., entities do not have foreign keys).

Entities are not required to be distinguished as identifier-independent or identifier-dependent.
Category entities are considered to be dependent entities.

Parent cardinality (one, or zero or one) is unspecified in relationships.

Relationships are not required to be distinguished as identifying or nonidentifying.
Entity-relationship views may contain generalization structures.

Discriminator properties for category clusters are optional.

9.10.3.2 Level 2 (key-based level)

194

A key-based view shall contain entities, relationships, primary keys, and foreign keys.

The entities of akey-based view shall be distinguished as either dependent or independent.

The relationships of akey-based view shall be distinguished as either identifying or nonidentifying.

The parent cardinality for each nonidentifying relationship shall be designated as either mandatory
or optional.

Each category cluster may have a discriminator property assigned.

Nonspecific relationships are prohibited.

Each entity of a key-based view shall contain a primary key and, if it has additional uniqueness
constraints, an aternate key for each constraint.

Each entity of a key-based view shall contain a foreign key for every relationship or generalization
structure in which it isthe child or category, respectively.

A key-based view may contain nonkey attributes.
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9.10.3.3 Level 3 (fully attributed level)

a) A fully attributed view has the same requirements as a key-based view.
b) A fully attributed view shall contain all nonkey attributes that are relevant to the subject of the view.

9.11 Key-style glossary

The general requirementsfor glossary entries are provided in 8.4. For key-style views, the following applies.

9.11.1 Key-style glossary semantics

Each key-style model shall be accompanied by narrative descriptions of all views, entities, and value classes
(attributes). Narrative descriptions are held in a glossary common to al models within the context of the
stated purpose and scope.

An dliasis one of the alternative names by which an entity or value class (attribute) might be known. A list of
aliases for an entity or value class (attribute) may be recorded in the glossary.

9.11.2 Key-style glossary syntax

No specified syntax exists for key-style glossaries.

9.11.3 Key-style glossary rules

For each view, entity, and value class (attribute), the glossary shall contain the following elements:
9.11.3.1 Name

@) Thename shall be the unique name, defined in accordance with IDEF1X lexical rules.
b)  Thename shall be meaningful and should be descriptive in nature.
¢) Abbreviations and acronyms shall be permitted.

9.11.3.2 Description narrative

a) The narrative description shall be a single declarative description of the common understanding of
an entity or value class (attribute).

b)  The narrative description shall be a single narrative description of the content of the view.

c) For an entity or value class (attribute), the narrative description shall apply to all uses of the
associated entity or value class (attribute) name.

9.11.3.3 Aliases

a) The narrative description associated with an entity or value class (attribute) shall apply exactly and
precisely to each of the diasesinitsaliaslist.

b) Name variations to support computer automation may be listed as aliases.

¢) A view may not have an alias.

9.11.3.4 Additional information
a) Optionaly, additional information regarding the view, entity, or value class (attribute) may be
provided, e.g., the name of the author, date of creation, date of last modification.

b) For aview, thisadditional information might also include level (e.g., entity relationship, key-based,
fully attributed) completion or review status, and so on.
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9.12 Key-style notes

Notes of a general nature and notes that document specific constraints are an integral part of the model.
These notes may accompany the view graphics.

9.12.1 Key-style notes semantics

Several different types of assertions are made with foreign keys and role names. Assertions that cannot be
made using role names are stated in notes. Such an assertion might specify aboolean constraint between two
or more relationships. For example, an “exclusive OR” constraint states that for a given parent entity
instance if one type of child entity instance exists, then a second type of child entity instance will not exist.

9.12.2 Key-style notes syntax
9.12.2.1 Graphic

a) A note that documents a specific constraint shall be represented in the view graphics by the symbol
(n) placed adjacent to the impacted object (entity, relationship, or attribute).

b) A notethat isgeneral in nature shall be represented in the view graphics by the symbol (n) placed
adjacent to the impacted object (entity, relationship, attribute, or view name).

¢) The n in the symbol (n) shall be the identifier of the note in which the text of the note is
documented.

d) A noteidentifier shall be anonzero, unsigned integer.

9.12.3 Key-style notes rules
9.12.3.1 Note identifier

a) Noteidentifiers shall be unique within aview.
9.12.3.2 Note body

a) A single body of note text shall apply to the same note identifier if that note identifier is repeated
within aview.

9.13 Key-style lexical rules

The lexical rules for this standard are provided in 4.2.3. When a “pure”’ key-style model (one that employs
only key-style modeling constructs) is developed, arevision to these rules is needed to maintain compatibil-
ity with earlier versions of IDEF1X, particularly that version described in FIPS PUB 184 [B13].

In IDEF1Xg7, class and property names are case sensitive. Terms beginning with an uppercase letter are con-
sidered variables, whereas terms beginning with alowercase letter are considered names. Variables are used
only in declarations made using the constraint language, and this language is not used with pure key-style
models.

It is important that IDEF1X models that were compliant with earlier language standards remain compliant
under this version. Therefore, the following lexical ruleis provided for key-style modeling:

a) Inakey-styleview, when theintent isto provide a view consistent with FIPS PUB 184 [B13],
1) Theuse of value classes shall be restricted to be consistent with FIPS PUB 184 [B13] domains,
as specified in 9.2, and
2) Entity and attribute names shall be case insensitive.
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10. Formalization

10.1 Introduction
10.1.1 Objectives

The purpose of the formalization is to state precisely what the modeling constructs of IDEF;;; mean by
providing for each construct a mapping to an equivalent set of sentences in a formal language. The graphic
language and RCL can then be considered a practical, concise way to express the equivalent formal sen-
tences.

IDEF e IS based on the object model and logic. IDEFy,e is formalized using only a limited subset of
logic—essentially what is covered in an introductory course.

Part of the formalization relies on a metamodel for IDEF,;«. The relations assigned by interpretations in
the formalism can be viewed informally as the familiar sample instance tables used in I DEFy;e. The meta-
model can be used independently of the detailed formalism.

The formalization is intended to support such areas as executable models, code generation, transformations
to and from other modeling styles, and integration with other kinds of models. Each of these requires the
precisely defined semantics provided by a formalization.

The immediate objective of the formalization of IDEF,;« isto provide aformal meaning for the constructs
of IDEFect and, therefore, provide aformal meaning for any IDER e View.

10.1.2 First order language, theory, and model/

First order logic is aformal language analog of those aspects of natural language that are used to describe
and reason about individual things and the relations among them.

a) Anindividual is denoted by a term, where a term is a constant, a variable, or a function symbol
applied to terms.
b) A relation among individualsis denoted by a predicate symbol applied to terms.
c) Anassertion about the relations among individuals is made by alogical sentence, whichis
1) A single proposition or multiple propositions connected by logical connectives such as and,
or,and if then, whereapropositionis
i) Alogica constant, wherethe logical constantsare true and false,
ii) A predicate symbol applied to terms;
2) Or aquantified logica sentence, where the variables are quantified by for all and for
some.
d) Alogica sentenceisclosed if every variable is quantified.

(Inafirst order language, a variable can denote only an individual; in a higher order language, a variable can
denote a predicate or function.)

A first order theory consists of afirst order language in which the constant, function, and predicate symbols
arerestricted to a certain vocabulary, plus a set of closed, logical sentences (called axioms) in that language.
A view isformalized as afirst order theory.

An interpretation of atheory assigns to the constants of the theory elements from a nonempty set represent-
ing the individuals in a universe of discourse (UOD). An interpretation also assigns a function to each func-
tion symbol and arelation to each predicate symbol, where the elements in the functions and relations come
from the UOD. (The term relation is being used here in its mathematical sense as a set of n-tuples, not in the
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specialized database sense.) As a result, the sentences in the theory become sentences about the UOD, and
their truth is determined according to the reality of the UOD. In this way, each sentenceis either true or false
in the interpretation. An interpretation is amodel for atheory if all axioms of the theory are true in the inter-
pretation.

(The terminology of object modeling and logic collide on the term “model.” In this clause, the term “view”
isused asit isin the other clauses. Theitalicized term “model” isused in the logic sense: an interpretation of
atheory for which all the axioms of the theory are true. The nonitalicized term “model” is used in the usual
informal sense.)

10.1.3 Definition of correctness for a view

An IDEF;e View is intended to be a conceptual model of a relevant subset of the things of concern to the
enterprise. This UOD has an independent existence and reality outside any view of it. At any point in time,
the UOD isin acertain state; in other words, certain individuals exist and have certain relationships to other
individuals.

For any state of the UOD, some sentences are true and other sentences are false. For example, in a given
state, the sentence that the part named top has a quantity on hand of 17 is either true or false. Similarly, the
sentence that every vendor has a distinct vendor number is either true or false. Some states of the UOD are
possible; others are impossible. For example, it is possible that a part named top has a quantity on hand of
17. It isimpossible that the quantity on hand be Tuesday.

Over time, the state of the UOD changes. For example, the quantity on hand can become 23 as aresult of a
adding 6 to a part’sinventory. Certain constraints have to hold in every state. For example, the constraint that
every vendor have a distinct vendor number must be true in every state of the UOD. Certain rules govern the
transition from one state to another. For example, adding 6 to a quantity on hand of 17 must yield 23.

The UOD encompasses all possible states.

For a view, state means the extents of each class and the values of al nonderived attributes and participant
properties. If any value changes, the result is a new state. The theory for a view covers al states and state
transitions.

An IDEFRyec; View is correct if it matches the UOD in relevant ways. An IDERy;e; View is correct if:

a) For all possible states of the UOD, there is a corresponding state of the view in which
1) All constraints of all classes are met,
2) Every possible next state of the UOD corresponds to anext state of the view that can be reached
from the current state of the view by a property of aclass, and
3) Noimpossible next state is reachable by a property of aclass,
b) For al impossible states in direct conflict with the view, some constraint of some classis not met.

Formally, amodeler constructs atheory of the relevant portion of the enterprise so that the models of the the-
ory match exactly the possible states and state transitions of the UOD. In other words, an I DEF,;« theory is
correct if the sentences it insists be true (the axioms) are indeed true for al possible states and state transi-
tions of the UOD and are false for all impossible states or state transitions.

IDEF e instance diagrams or tables for a view are a representation for the state of the view (see
Figure 101).

In the context of the formalization, the sample instance tables present a portion of an interpretation for the

theory. If all the constraints are met and all responsibilities whose preconditions are satisfied can be met
without raising exceptions, then the sample instances are a portion of amodel of the theory.
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Figure 101—Informal and Formal correspondence

10.1.4 Formalizing a view by a theory

An IDEF;¢ View consists of one or more classes, relationships, properties, and constraints expressed as
diagrams and RCL .. The formalization procedure generates a corresponding | DEF,;« first order theory.

In order to formalize an IDEF;q View, the view is restated as instances and property values in the meta-
model of IDERy,e. Thisis done by translating the graphical expression of the view into declaration RCL.
The declaration RCL and realization RCL are mapped to logical sentences in definition clausal form. The
mapping rests on the fact that in RCL, an object message is alogical proposition. These sentences become
axioms in the theory for the view. The theory also includes the axioms common to al IDERe theories,
such as the clauses for the function and predicate symbols included in the vocabulary of the theory and the
clauses for dynamic binding. In general, the axioms make statements about the metamodel and the current
state of the view.

A state of a view isits set of instances and their nonderived attribute and participant property values. Ini-
tially, the state of aview isjust what is declared into the metamodel for the view. An update message issued
by an RCL query or within the realizations of aresponsibility resultsin anew state. If aquery or responsibil-
ity fails, the state remains unchanged.

An IDEF;¢ theory uses afixed set of function and predicate symbols. The user-defined RCL messages and
realizations are mapped to formal propositions and axioms using predominately just two predicate symbols:
has and 1S. A class named Cn is formally denoted by the term #Cn, where # is a function symbol, con-
strained by axioms to be aone-to-one function into arange disjoint from all others. There is no need to quan-
tify over the fixed set of function and predicate symbols, so a first order language is sufficient to formally
define such concepts as dynamic binding.

10.1.5 Formalization of IDEFobject

The formalization of IDEF;e has two phases. First, a procedure is given whereby a valid IDEF; View
can be restated as afirst order theory in order to state precisely the semantics of avalid | DEFyje View. Sec-
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ond, the procedure is applied to ametamodel of IDEFR;« in order to define formally the set of valid IDEF;,
ject VIEWS.

Applying the mapping to a valid metamodel Vm of IDEF,;« Yields atheory Tm of IDEF;¢. A population
of vm isvalid if and only if itisamodel for Tm. This formally defines the set of valid IDEF; views. In
other words, an IDEF;« view is valid if and only if it is a valid population of the metamodel, or equiva-
lently, its population of the metamodel isisomorphic to a model of the theory of the metamodel. vmm can be
proven avalid view by proving that vm is avalid population of vm.

10.2 IDEF ,pjec metamodel

Throughout, the metamodel is used as a point of orientation. For this reason, it is presented early in the for-
malization, although strictly speaking it has no formal meaning without appeal to the material that followsit.
Initially, it can be seen asaview like any other.

I DEF e CaN be used to model IDER;¢ itself. Such metamodels can be used for various purposes, such as
repository design, tool design, or specification of the set of valid | DEF,;e models. Depending on the pur-
pose, somewhat different models result. There is no “one right model.” For example, amodel for atool that
supports building models incrementally must allow incomplete or even inconsistent models. The metamodel
for formalization emphasizes alignment with the concepts of the formalization. Incomplete or inconsi stent
models are not provided for.

A metamode! Vm for IDEF,e; is amodel (i.e,, aview) of the IDEF,;ey constructs that is expressed using
those constructs, so that there exists a valid instance of Vm that is a description of vm itself. Every view
implicitly includes the IDEF,;«; metamodel and the formalization of a view includes the formalization of
the metamodel.

The metamodel is based on the following ideas:

a) The elementary type of knowledge is that a class instance has a property value, represented in the

form
C: I has P: V.

b) The axioms for the interface of a metamodel are generated by populating the metamodel with itself
by declarations of the above form.

¢) Theaxiomsfor the realizations of a metamodel are generated by applying rewrite rules to the (RCL)
realizations, represented in the form

C: I has P: V ifg.¢s Sentence.

The metamodel does not include properties to do dynamic binding. It was felt that it would be clearer to do

the formalization of dynamic binding entirely in predicates and avoid the potential misunderstandings inher-
ent in defining alanguage in terms of itself.
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10.2.1 Interfaces
Figure 102 is an IDEF1Xobject class diagram for the metamodel .
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Figure 102—IDEFobject Class Diagram for the IDEFobject Metamodel
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10.2.2 Realizations

Most of the realizations for the responsibilities are included here to provide a single point of reference. Fur-
ther explanations are found in the subclauses on the formalization of the modeling constructs.

10.2.2.1 object

10.2.2.1.1 (op) object: | owd assSt ar

Anobject I hasalowClassStar of Cif | hascC asadirect or indirect LowClass.

object: Self has lowClassStar:C ifg.¢

Self has lowClass: C
or Self has lowClass..lowClassStar: C.

10.2.2.1.2 (co) object:isC asslnstance
Every object I isadirect or indirect instance of class.

object: Self has isClassInstance ifg.s
Self has lowClassStar: f#class.

10.2.2.2 view

10.2.2.2.1 (co) vi ew i sNameCk

The name must be a qualified name, top down from atop (no parent) view.

view: Self has isNameOk 1ifg4.¢

(if Self has parent..name: Vn
then

Self has name: (Vn:Name)
endif) .

10.2.2.3 class

10.2.2.3.1 (op) class:lub

Self hasaleast upper bound Lub with aclass C if Lub isacommon superclass and no subclass of Lub is
acommon superclass.

class: Self has lub: [C,Lub] ifg.s

Self has superStar: Lub,

C has superStar: Lub,

not (Self has superStar: Lub2,
C has superStar: Lub2,
Lub != Lub2,
Lub2 has superStar: Lub)

10.2.2.3.2 (op) class:super

Self hassuper:sSif Self isasubclassin acluster where s isthe superclass.

class: Self has super: S ify.¢
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Self has highCluster..super: S.

10.2.2.3.3 (op) class:superStar

Self hassuperStar:Sif SelfisSor Self isadirect orindirect subclass of S.

class: Self has superStar: S ifg.s
Self = S
or Self has super..superStar: S.

10.2.2.3.4 (co) class:isNameOk

The name must be a qualified name, top down from atop view.

class: Self has isNameOk ifg.¢

Self has view..name: Vn,
Self has name: (Vn:Name).

10.2.2.3.5 (co) class:isaObject

Every classisobject or asubclass of object.

class: Self has isaObject ifg.¢

Self = #object
or Self has superStar: #object.

10.2.2.3.6 (co) class:isAcyclic

No class can beits own superclass, directly or indiectly.

class: Self has isAcyclic ifg.s
not (Self has super..superStar: Self).

10.2.2.3.7 (co) class:isParallelLowClass

If C hasasubclass S, then the metaclass (1owClass) of C cannot be a superclass of the metaclass of S.

class: Self has isParallellLowClass 1ifg.s
if Self has lowClass: C,
Self has super: S,
S has lowClass: CS,
not C = CS
then
not CS has isaStar: C
endif) .

10.2.2.3.8 (co) class:isaInstanceConsistency

For any class C with super class s, C inherits from C’ if S inherits from C’ . Because inheritance is done
along both instance of (LowClass) and kind of (super class) relations, the two must be constrained to be
consistent.

class: Self has isalnstanceConsistency ifg.s

forall (Self has super..lowClass: C): (
Self has lowClassStar..isaStar: C
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10.2.2.4 sClass

10.2.2.4.1 (op) sClass:create

sClass: Self has create:PnVs ifg.r

Self has new: I,
if PnVs has last:I

then

Self has init: PnVs
else

Self has init (PnVs..insertLast (I))
endif.

10.2.2.4.2 (op) sClass:new

sClass: Self has new:I ifg.¢
Self has nextOid: N,
if #N = I
then
Next is N + 1,
Self has nextOid:=Next
else
assert not #object has instance: I
endif,
Self super has new: I,
Self has directInstance:+= I.

10.2.2.4.3 (op) sClass:init

sClass: Self has init:PnVs ifg.¢

PnVs has last:I,
forall (PnVs has member: (Pn:V)): ( I has Pn:=V).

10.2.2.4.4 (op) sClass:add

sClass: Self has add:PnVs ifg.¢
PnVs has last:I
forall ( I has class..highCluster: Clu,
Self has superStar..highCluster: Slu):

( not (Clu = Slu)),

forall (Self has superStar:S, I has lowClass: S):
(I has lowClass:-= 3),

I has lowClass:+= Self,

Self has init: PnVs.

10.2.2.4.5 (op) sClass:delete

object: Self has delete ifg.¢
if not Self has isBeingDeleted
then
Self has isBeingDeleted:= true,
forall (Self has lowClass: C):
(C has propagateDelete: Self,
Self has lowClass:-= C)
endif.
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10.2.2.4.6 (op) sClass:propagateDelete

sClass: Self has propagateDelete: I ifgy.¢
Self has nonParticipant:I,

forall (Self has super:C, not C = #object): (C has
propagateDelete: I)

10.2.2.4.7 (op) sClass:nonParticipant

sClass: Self has nonParticipant: I 1ifg.¢
forall ( Self has responsibility:P,
P has class: #participant,
P has name: Pn,
P has inverse: Pi,
Pi has name: Pni,
I has Pn:Ii,
Is is {Isib where Ii has Pni: Isib},
Is has count:N
) :
(I has Pn:-= Ii,
NIs is N - 1,
if Pi has cardinality: M, NIs < M or Pi has isTotal,
NIs < 1
then
Ii has delete
endif) .

10.2.2.4.8 (op) sClass:remove

sClass: Self has remove: I 1fg.¢

forall (Self has sub: C, I has class:C): (C has remove: I),
Self has nonParticipant:I,
if I has lowClass: Self
then

I has lowClass:-=Self,

forall (Self has super:S, not (I has class: S)):

(I has lowClass:+=S3)

endif,
forall (Self has highCluster:Clu, Clu has isTotal, Clu has
super: S):

(S has remove: 1I)

10.2.2.4.9 (op) sClass:instance

Self has instance:Iif I isaninstanceof Self.

sClass: Self has instance: I ifg.¢

Self has directInstance: I
or
Self has lowCluster..sub..instance: I.

10.2.2.4.10 (op) sClass:with

sClass: Self has with:PnVs ifg4.¢
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PnVs has last:I,
Self has instance:I,
forall (PnVs has member: PnV): (I has PnV).

10.2.2.5 vClass

10.2.2.5.1 (op) vClass:with

vClass: Self has with:PnVs ifg.¢

PnVs has last: I,

Self has instance:I,

Self has responsibility: UcN,

UcN has class: #uniquenessConstraint,

forall (UcN has characteristic..name: Pn): (

PnVs has member: (Pn:V)),
Vs 1is [V where UcN has characteristic..name: Pn,
PnVs has member: (Pn:V)],

UcN has name: UCN,
I has UCN:Vs,
forall ( Self has superStar..responsibility: CO,
CO has class: #constraint,
CO has name: COn) :
(I has COn).

10.2.2.6 cluster

10.2.2.6.1 (co) cluster:isTotalOk

For atotal cluster, every instance of the superclass must be an instance of one of the subclasses.

cluster: Self has isTotalOk ifg.¢

if Self has isTotal
then

Self has super: S,

not (S has directInstance: I)
endif.

10.2.2.6.2 (co) cluster:isMutuallyExclusive
For a cluster, no instance of the superclass is an instance of more than one of the subclasses.

cluster: Self has isMutuallyExclusive ifg.¢

Self has super: S,
forall (S has instance: I): (
forall (Self has sub: B, I has class: B,
Self has sub: BB, I has class: BB): (not B = BB)

10.2.2.7 constraint

10.2.2.7.1 (co) constraint:isTotalFunction

A constraint must be atotal function.
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constraint: Self has isTotalFunction ifg4.¢

Self has isTotal,
Self has isFunction.

10.2.2.8 uniquenessConstraint

10.2.2.8.1 (co) uniquenessConstraint:isClassLevel

Level must be class.

uniquenessConstraint: Self has isClassLevel 1ifg.¢

Self has level: class.
10.2.2.9 Value
10.2.2.9.1 (op) val ue: delete
Always fal se because a value class instance cannot be deleted.
value: Self has delete ify.r false
10.2.2.9.2 (op) value: ‘<
For two value classinstances, Xand Y, X < Y if they are not equal and X<Y according to the inherited ‘<.
value: Self has ‘<’: (V:value) ifg.¢
Self =V,
Self super has ‘< : V

10.2.2.9.3 (op) value: ‘==

For two value classinstances, X and Y, X == Y if they have a common superclass for which all properties
of auniqueness constraint agree.

value: Self has ‘==': (V:value) ifgy.¢
Superclass is Self..lowClass..lub(V..lowClass)..isaStar,
Superclass has (responsibility:UC)..class..name:
uniquenessConstraint,
forall (UC has characteristic..name: Pn): (Self..Pn == V..Pn)

10.2.2.9.4 (op) val ue: ‘>’
For two value classinstances, Xand Y, X > Y if they are not equal and X>Y according to the inherited *>’.
value: Self has '>': (V:value) 1ifg.¢

Self =V,
Self super has '‘>': V

10.3 Definition clausal form

Definition clausal form is expressively equivalent to this standard form of first order logic, i.e., any logical
sentence can be transformed into an equivalent set of clauses.
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10.3.1 Truth symbols
Thetruth symbols are t rue and false.
10.3.2 Constant symbols

A constant symbol denotes an individual. The constant symbols are any positive integer, any character string
bounded by single quotes, or any aphanumeric character string beginning with a lowercase letter not desig-
nated to be a function or predicate symbol. In addition, the special symbols [] and {} (denocting the
empty list and empty set respectively in the intended interpretation) are constants. For example, 3, part,
‘standard vendor’, [],and gty on_ hand are constants.

10.3.3 Variable symbols

A variable symbol denotes an individual, but just which individua is unknown. A variable symbol is any
alphanumeric character string beginning with an uppercase letter, possibly subscripted, or tic’'d. The under-
score is considered an uppercase letter. An underscore standing alone, _, is an abbreviation for a variable
symbol not otherwise used. For example, PartName, ,Part Type, X, and X’ arevariables.

10.3.4 Function symbols

A function symbol denotes a function. Each function symbol has an associated arity, a positive integer spec-
ifying the number of argumentsit takes.

10.3.5Terms

A term denotes an individual. A term consists of a constant, a variable, or afunction application where each
argument to the function application is aterm.

10.3.6 Function application

A function application is a function symbol applied to arguments, where each argument is aterm. Function
applications are written in prefix form, such as £ (x) or infix form, such as X : 1, or unary prefix form, such
as #7. A function application denotes the result of applying afunction. A function application £ (X) denotes
the result of applying the function denoted by f to the value denoted by X. For example if X is1 and £ is
{<1,2>,<3,4>}, £ (X) is2, £ (2) isundefined because 2 is not in the domain of f, and £ (W) is undefined
because w has no value.

10.3.7 Predicate symbols

A predicate symbol denotes arelation. Each predicate symbol has an associated arity, a positive integer spec-
ifying the number of argumentsit takes.

10.3.8 Proposition

A proposition is a truth symbol, or a predicate symbol applied to arguments, where each argument is aterm.
Propositions are written in prefix form, such as p (X, Y) or infix form, such asx = 1. A proposition
p (X,Y) istrueif and only if the tuple <X, Y> appears in the relation denoted by the predicate symbol p.
For exampleif xisl,Yis2, andpis {<1,2>,<3,4>}, X=1istrue p(X,Y) istrue p (2, 3) isfase
andp (Y, Z) isneither true nor false because z has no value.
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10.3.9 Sentence

A sentenceisaproposition, or a negated sentence, or logically connected sentences, or a quantified sentence.
A sentenceistrue or falseif and only if (iff) every proposition in the sentence istrue or false. The truth value
of a sentence depends on the truth value of the propositions in the sentence according to the rules for nega-
tion, logical connectives, and quantification.

The sentence ~F isthe negation of the sentence F. ~F istrue if F isfaseand faseif Fistrue.

The truth of a sentence H formed by logically connecting two sentences F and G is given by Table 17.

Table 17—Example of logically connected sentences

Logical connective Symbol H Histrueif
Conjunction O FOG Fistrueand G istrue
Disgjunction O FOG Fistrueor G istrue
Implication > F>G Fisfaseor Gistrue
Implication < G € F Fisfalseor Gistrue

The universal quantification of a sentence F, written 0 (X) (F), istrueif F istruefor every possible assign-
ment to the variable x of avalue v from the universe of discourse.

The existential quantification of a sentence F, written [I(X) (F), istrueif F istrue for some assignment to
the variable X of avalue v from the universe of discourse.

Above, al occurrences of X within F are within the scope of the quantifier. A variable that is within the scope
of a quantifier is bound; otherwise the variable is free. If an X appears within the scope of more than one
quantifier, it is bound by the innermost quantifier. A sentence is closed if al variables in the sentence are
bound.

A variable name used within multiple quantifiers, for example,
Ox) ( p(X,v) OOX)g(Y,X) )

names distinct variables. Using distinct names for distinct variables, for example,
Om) ( pw,y) OOX)g(Y,X) )

does not change the forma meaning but is usually clearer.

0(x1,%X2, .., Xn) (F), isanabbreviationfor 0 (x1)0(X2) .. O(Xn) (F)
0(X1,X2, .., Xn) (F), isanabbreviationfor 0(x1) 0(x2) .. O(Xn) (F)
O(*) (F), theuniversal closure of asentence F, is an abbreviation for
0(X1,X2,..,Xn) (F)

wherex1, x2, .. Xn areall thefreevariablesin F intheir order of first appearance.
O¢*) (F), theexistential closure of asentence F, is an abbreviation for
0(X1,X2,..,Xn) (F)

wherex1, X2, .. Xn areall thefreevariablesin F intheir order of first appearance.
1 (X) (F), theunique existential quantifier of a sentence F, is an abbreviation for
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OX,x")(FOxXx =x" OOX(F> X =X"))
10.3.10 Clause
A clauseis a sentence that has the form

O*)(H € B)

where H (called the head) is aproposition and B (called the body) is a sentence. Because the quantification is
always universal,

H <€ B

is usualy written, with the universal closure being understood. An equivalent formis
OX)(s<OY)B)

where X are the variablesin H and Y are the variablesin B but not in H. Informally, the clause can be read
“Histruefor values of X if B istrue for those values and some values for v.”

There are two special cases—either H or B can be empty.

H means [ (*) (H).ThisisequivdenttoH & true.
< B means (*) (B) . Thiscorrespondsto aquery that asks whether B istrue.

The syntax for definition clausal formis

Clause =2

{ Proposition } € Sentence

or Proposition € {Sentence }
Proposition =

true

or false

or PredicateSymbol (Term { , Term }* )

or Term InfixPredicateSymbol Term
Term ->

ConstantSymbol

or VariableSymbol

or FunctionApplication
FunctionApplication =

FunctionSymbol (Term { , Term }* )

or Term InfixFunctionSymbol Term

or UnaryFunctionSymbol Term
Sentence >

Proposition

or Negation

or Conjunction

or Disjunction

or Implication

or ExistentialQuantification

Oor UniversalQuantificationl

or (Sentence)
Negation > ~ Sentence
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Conjunction = Sentence [ Sentence

Disjunction = Sentence [ Sentence

Implication = Sentence = Sentence
ExistentialQuantification = [(Variables) (Sentence)
UniversalQuantification = [O(Variables) (Sentence)
Variables = Variable { , Variable }*

10.3.11 Closed world assumption

IEEE

Std 1320.2-1998

The classic example of the closed world assumption is a bus schedule, which states the existing connections
explicitly, but all the non existent connections implicitly (by not listing them). The closed world assumption
isalso acommon and natural assumption in databases and programs. Only what istrue is recorded and any-
thing that is not recorded or cannot be derived from what is recorded is assumed to be false.

For aset of clauses s, the closed world assumption is the assumption that the sentences represent all thereis
to be known about the relations represented by the heads of the sentences. The closed world assumption
manifests itself by treating the clauses in s as the if sides of an implied if-and-only-if. In other words, the
only way ahead istrueisif it isimplied true by the sentences. The only-if is known as the completion of s,
written comp (S) .

For example, for aset s

the completion applies the following steps:

a)

b)

0)

d)

e)

Remove constants as arguments
a(Y) € b(Y)

a(y) € Y =2

b(Y) € Y =3

b(Y) € Y =4 0c(x)

Add clauses saying that any predicate symbol for which no head was specified cannot be true.

c(X) € false
[This useless tautology will be reversed in step €) to something useful.]

Combine identical heads, renaming variables as needed.
a(y) € b(m)y =2

b(Y) € Y =30( =4 Ocx))

c(X) €« false

Make the existential quantification explicit for variables appearing only in the bodies.

a(Y) € b(y)) by =2
b(Y) € (Y =30 =4 00X)c(X)))
c(X) €« false

Reverse the implications giving comp (S) .

a(Y) 2 (b(y) Oy = 2)

b(Y) 2 (Y =3 0( =400X)c(X)))
c(X) > false
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The formalization adopts the closed world assumption. If, at the penultimate step of the formalization of a
view, the theory includes a set of clauses s, then the final step isto add comp (S) to the theory. Within the
clauses, an exception predicate is used to indicate a result is neither true nor false because a condition has
been detected that falls outside the intended interpretation of the theory. This provides a pragmatic limitation
on the closed world assumption.

10.4 Vocabulary

In this subclause, the constant, function, and predicate symbols of an IDEFR;¢ theory are specified. For-
mally, this clause merely specifies the symbals, their arity, and the syntactic form to be used. Informally, this
clause also summarizes their intended meaning and use.

10.4.1 Constant symbols

The constant symbols are as follows:

[ ] the empty list

{1} the empty set

wr the empty string

A the empty identifier

facts theinitial state

bot the least, bottom type, not implemented by any class
true, aninstance of #boolean

false, an instance of #boolean

In addition, any constant symbol that occurs in any axiom of the theory is considered a constant in the
vocabulary of the theory.

10.4.2 Function symbols

A fixed set of function symbolsis used in the formalization. To help describe the intended use of the function
symbols, the argument values are taken from Table 18.

Table 18—Argument values for function symbols

Argument

value name Argument value
I Aninstance of a state class

K A constant

L Alist

T A type

P A property

Pf A fact property

Pn The name of property p or P
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Table 18—Argument values for function symbols (continued)

Argument

value name Argument value

PO A property operator; oneof :, :=, : ! =, :+=, : —=. Each isafunction symbol.
S A state

Si Theinput state

So The output state

\Y A value

Value A variable or theresult of value (P, V, Value)

X, Y A term

Xs A list of variables

The function symbols, each illustrated with an example of their application and intended meaning, are
described in Table 19.

Table 19—Sample function symbols

Function symbol

Example of application and meaning

#X Names an element of the UOD.

X PO Y Names an element of the UOD.

super (X) Names an element of the UOD.

[X|L] Denotesthe list that isthe same aslist 1. except it has one more element, X,
asthefirst element.

list(T) Denotes the type of alist in which all members are of type T.

value (Pf,V,Value)

Denotes avalue of avalue class for which P£ hasvalue v.

remember (I,P£f,V,S)

Denotesastate s’ .In s’ , I'svaluefor P£ isV;in S itisnot.

forget (I,P£f,V,S)

Denotesastate s’ .In S, I'svaluefor PE£isV;in S’ itisnot.

listof (k,Xs)

Usedinis (CI,Si,Ws,listof (k,Xs),So) € Sentence.Ws is
thelist of w for which the sentence istrue. The sentence must be
read-only,i.e, Si = So.

foreach (k, Xs)

Usedinis (CI, Si,Ws, foreach(k,Xs),So) € Sentence.Wsis
thelist of w for which the Sentence istrue, in order, taking an initial
input state si into afinal, cumulative output state, So.

foreach (k, Xs, Acc)

Usedinis (CI,Si,Ws, foreach (k,Xs,Acc),So) €

Sentence. Ws isthelist of w for which the Sentence istrue, in order,
taking aninitial input state S1i into afinal, cumulative output state, So, and
taking theinitial value of the accumulator, Acc, to thefina value.

Each of the functionsin Table 19 istotal and 1 to 1. All the ranges are digjoint.

Additional function symbols are defined as a part of the included base theories.
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10.4.3 Predicate symbols

A fixed set of predicate symbolsis used in the formalization. This clause specifies the predicate symbols,
their arity, and the syntactic form used. Each is listed with abrief summary of the intended meaning.

To help describe the intended use of the predicate symbols, the argument values are taken from Table 20.

Table 20—Argument values for predicate symbols

Argument value
name Argument value

c A class

CI Asender. CI = Cs:Is

Cs The sender class

I The nominal receiver

I’ The actual receiver. | =1’ unlessthereisinheritance fromaclass I’ to aninstance I.

IRs Thesetof I’ : R whereR isareachable, matching responsibility and I isits receiver.
I’ : Risthe minimum member of | Rs.

Is The sender instance

K A constant

L Alist

P A responsibility

Pn A responsibility name

PnT Ph POT

Pnv Pn POV

PO A property operator; one of :, :=, :!=, :+=, :-=. Each isafunction symbol.

POn The property operator name, one of get, set, unset, add, or remove

QPnT The qualified property nameof R. QPnT = Cn:Pn PO T

R The selected responsibility. For an explicit responsibility, R=# (Cn: PnT) . For animplicit
responsibility R=# (-Cn:Pn:T)

RPnVvV R:V or PnV

S A state

Si Theinput state

So The output state

T The annotated argument type or alist of annotated argument types for R. The annotated
typeT = +T’ where T’ isthetypeof aninputargument. T = T’ for T’ thetypeof an
output argument.

\ The argument value or alist of argument values

Value A variable or the result of value (P, V,Value)

X, Y A term

Xs A list of variables
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The predicate symbols, each illustrated with an example of their application and intended meaning, are

described in Table 21.

Table 21—Sample predicate symbols

Predicate symbols

Example of application and meaning

w O ws Wisamember of list Ws.

Iglc Instate S, I isadirect instance of classc,i.e., CisalowClass of I. The
reflexive, transitive closure of €41 is 51 * and the irreflexive, transitive clo-
sureof €51 isggl+.

I g C Instate S, I isaninstance of classC, i.e, the lowClass of I isasubclass
of C. Thereflexive, transitive closure of €4 is £5* and the irreflexive, transi-
tive closure of g4 is €5+.

I1g T Instate s, T isof type T, i.e.,, the LlowClass of I isasubtypeof T.

T <:g T’ Instate S, T isasubtypeof T.

X =Y Term X equals term Y according to the equality axiom.

accept (S,V,T)

Instate s, v isacceptable asatype T.

bind(Cs:Is, S, I, RPnvV,
POn, IRs, I’, R, V, T)

RelatesCs, Is, S, I andRPnvV totheactual receiver I’ and realiza-
tion R to be used for amessage I has RPnV, based on the inheritance
search order, visibility, and argument values and types. POn, IRs,andT
are also determined.

build(v,T,V")

V'’ matches v on V’'sinput values and has otherwise unused variablesfor the
output values. build (T, T’) T’ isalistlike T, but hasotherwise
unused variables as its element

cardinalityOk
(CI, s, I, POn, R, V, T)

Thetotal, function, and cardinality N constraints are met whenthe T has
POn : V message was issued. None of these constraints are checked for a
nonget property operator to an implicit realization R. A cardinality N
constraint is checked only for a get property operator to aread-only respon-
sibility R.

cardinalitySolu-

T, Solutions, Cnt)

tions(CI,S, I, POn, R, V,

Themessage I has POn:Vistruefor Cnt distinct valuesv. Solutions
isthe set of such values.

count (L, N)

L has N members.

exception (R, X)

R isan exceptional object outside the intended scope of the theory, with sup-
plemental information X. An axiom ensures that in a model no exception is
true.

fact (s, 1, P, V)

In state S, state classinstance I has fact property P value v.

fact (Value, P,V )

The value of avalue class instance has afact property P value v.

floor (S, super(Is:Cs),LC,
P1,L,CQ)

In state S, asend to super by the sender Cs : Is establishesafloor LC, P1, L
and C that must be less than that for the selected responsibility R.

has(c1,si,T,rRPnv,So)

Sender CI ininput state S1i, sendsto object I for aresponsibility R (RPnV
iSR:V) or aresonsibility named Pn in one of the property operator forms
(RPnVisPn:V or Pn:=V Or Pn:!=V Or Pn:+=V Or Pn:-=V)with
avalue of v, and the output state is So. Every message isin thisform.

ﬁaS(CI,Si,I,P,V,SO)

For classinstance CT ininput state Si, object I hasaresponsibility P value
of v and the output state is So. The head of every realization isin thisform.

1§(C1,Si,X,Expr, So)

For sender CT ininput state S1, term X isthe oid of the object denoted by
theterm Expr, and the output stateis So. AnExpr iseitheraLiteral or
an arithmetic expression.

isType (S, T)

Instate s, T isatype.
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Table 21—Sample predicate symbols (continued)

Predicate symbols

Example of application and meaning

C isag C’

Instate S, class C isasubclassof classC'. isag* isthereflexive transitive
closure and i sa s+ istheirreflexive transitive closure.

isList (L)

L is a list.

isState (9)

S isastate.

lessThan (S,
[LCI Pl/ L/ C/ T] ’
[LC’,P1’,L",C",T"])

Theinheritance order isascending on Lowd ass, Plicity, Level,
d ass, Type.

lub (S, List, T)

In state S, every member of List istype T, and there is no distinct subtype of
T for which thisistrue.

match (Cs:Is, S,
1,0PnT,V,R,Pn,L,P1l,T)

Risvisibleto Cs and Is, matchesQPnT in name and property operator, has
type T that accepts v, isat level L, and has plicity P1 (implicit or explicit).

minimum (S, IRs, [R,I’,
Lc,P1,L,C,T])

For any responsibility R’ that matches, isreachable, and is above the floor,
R = R’ orRislessthanR’.

noDup (L)

L has no duplicates.

parsebPnV (PnVv, Pn, POn,
V, QPnT)

Relates PnV to Pn, POn, V, and QPnT.

parseRV(R: V, Pn, POn,
T, V, QPnT, C)

RelatesR: VtOR'S Pn, POn, T, QPnT and C.

post (R,R")

For responsibility R, the post-conditionisR’ .

postOk(Si, IRs, V, T,
So)

Ininput state Si and output state So, the post-conditionfor I has R:V is
met.

pre(R,R")

For responsibility R, the pre-conditionisR” .

preOk(Si, IRs, V, T)

Ininput state Si, the pre-condition for | hasR: v ismet.

reach(S,I,LC,C,I")

I canreach class C dong an inheritance path. | eg1* LCand LC isag* C.

theoryRep (Cn, Self, Rep)

For base type Cn, instance Se1f, thetheory’srepresentationisRep.

visible (Cs:Is,S,I,R)

In state S, the sender Cs:Is can see R for amessageto I for R.

Additional predicate symbols are defined as a part of the included base theories.
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10.5 Axioms of base theories

An IDEFye theory is built upon an equality axiom and theories for lists, pairs, identifiers, characters,
strings, integers, and reals.

10.5.1 Equality axiom
The eguality axiom,
X =X

means that two terms are equal if and only if they have the same function symbol, the same number of argu-
ments, and all corresponding arguments are equal .

The ranges of al the functions in the vocabulary are distinct because of the equality axiom. Since the func-
tion symbols are distinct, so must be the ranges of the functionsin any model.

For the same reason, al constants in the vocabulary are distinct.
10.5.2 List

The vocabulary consists of the following:

[] aconstant.

L] an arity 2 function symbol
isList an arity 1 predicate symbol

O an arity 2 infix predicate symbol
count an arity 2 predicate symbol
noDup an arity 1 predicate symbol

The axioms are as follows:

isList ([])
isList ([X|Xs]) € isList (Xs)

X OL € isList(L) OL = [X]|_]

X OL €« isList(L) OL = [ |Xs] OX O Xs

count (L,N) €« L = [] ON =0

count (L,N) < isList(L) UL = [ [Xs] U count(Xs,M) ON is 1 + M

noDup (L) € L = []

noDup (L) € isList(L) O L = [X|Xs] O ~(X O Xs) 0 noDup (Xs)
Thenotation [X1, X2, .., Xn] isanabbreviationfor (X1 | [ X2 | .. | Xn | [ 1 1 1.
10.5.3 Pair

The vocabulary consist of the following:
isPair an arity 1 predicate symbol
The axioms are as follows:

isPair (X:Y)
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10.5.4 Character

The vocabulary consist of the following:
isCharacter an arity 1 predicate symbol

The notation a is an abbreviation for Ya’.

10.5.5 Identifier

The vocabulary consist of the following:

v aconstant.
prefixIdentifier an arity 2 function symbol
isIdentifier an arity 1 predicate symbol

The axioms are as follows:
isIdentifier (‘")
isIdentifier (C) €« isCharacter (C)
isIdentifier (prefixIdentifier(C,I)) <
isCharacter (C),isIdentifier(I), ~(I = ‘')
The notation abc isan abbreviation for *abc’, which isan abbreviation for
prefixIdentifier(‘a’,prefixIdentifier(‘b’, ‘c’)).

10.5.6 String

The vocabulary consist of the following:

w a constant.
PrefixString an arity 2 function symbol
isString an arity 1 predicate symbol

The axioms are as follows:

isString (V)
isString (prefixString(C,S)) € isCharacter(C),isString(S)

The notation “abc” isan abbreviation for
prefixString(a,prefixString (b,prefixString(c, “7))).
10.5.7 Integer

The vocabulary consist of the following:

0 aconstant.

iPlus an arity 3 predicate symbol
iMinus an arity 3 predicate symbol
iTimes an arity 3 predicate symbol

218 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg; (IDEFpjecr) Std 1320.2-1998

iDivideby an arity 3 predicate symbol

iExp an arity 3 predicate symbol
isInteger an arity 1 predicate symbol
asReal an arity 2 predicate symbol

The axioms are assumed.
10.5.8 Real

The vocabulary consist of the following:

0.0 a constant.

rPlus an arity 3 predicate symbol
rMinus an arity 3 predicate symbol
rTimes an arity 3 predicate symbol
rDivideby  anarity 3 predicate symbol
rExp an arity 3 predicate symbol
isReal an arity 1 predicate symbol

asInteger an arity 2 predicate symbol

The axioms are assumed.

10.6 Rewriting an IDEF ;e View to definition clausal form

An IDEF,e View is translated into a theory in the definition clausal form language described in 10.3 and
10.4. Thetrandation is done in three steps.

10.6.1 Declare instances of the metamodel for a view

In order to generate the theory for a view, the graphics are restated as RCL declarations. The declarations
declare that the metamodel contains the view being formalized. A declaration declares the value of a class
instance responsibility.

Cn: I has Pn: V.
This statement can be read as class Cn’sinstance I has a property Pn value of v.
Fully qualified names are used for vn, Cn, and Tn.
10.6.1.1 View
For the metamodel view, declare
view: #metamodel has lowClass: #view.

For any other view Vn with parent view V, declare
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view:#Vn has lowClass: #view.
view:#Vn has name: Vn.
view:#Vn has parent: V.

10.6.1.2 Class
For each state class Cn in the view vn, declare

sClass:#Cn has lowClass: #sClass.
sClass:#Cn has view: #Vn.
sClass:#Cn has name: Cn.

For each value class Cn in the view vn, declare

vClass:#Cn has lowClass: #vClass.
vClass:#Cn has view: #Vn.
vClass:#Cn has name: Cn.

For each parametric valueclassCn( T1, T2, .., Tn) intheview vn, declare

parametricVClass:#(Cn:[T1,T2,..,Tn]) has lowClass:
fparametricvVClass.

parametricVClass:#(Cn:[T1,T2,..,Tn]) has view: #Vn.
parametricvVClass:#(Cn:[T1,T2,..,Tn]) has name: (Cn:[T1,T2,..,Tn]).

10.6.1.3 Generalization

For each class Cn that isthe superclass for a cluster, where each cluster under a superclassis assigned a con-
stant K unigue within the superclass, declare

cluster:# (Cn:cluster:K) has lowClass: #cluster.
cluster:# (Cn:cluster:K) has super: #Cn.

If the cluster istotal, declare

cluster:#(Cn:cluster:K) has isTotal.
For each subclass Cn’ , declare

cluster:# (Cn:cluster:K) has sub: #Cn’.
10.6.1.4 Relationship
For each relationship between two classes,

a) Arbitrarily but consistently, designate one class the parent and the other the child.
Let
PCn = the fully qualified name of the parent class.
PCsn = the simple, unqualified name of the parent class.
CCn = the fully qualified name of the child class.
CCsn = the simple, unqualified name of the child class.
PRn = the role name of the parent class. If no role name is specified, PRn = PCsn.
CRn = the role name of the child class. If no role name is specified, CRn = CCsn.
b) Declaretheinverses.
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0)

participant:# (-PCn:CRn:CCn) has inverse: #(-CCn:PRn:PCn).
participant:# (-CCn:PRn:PCn) has inverse: #(-PCn:CRn:CCn) .
Specify the participant properties.
If the parent has no participant property with a get property operator for the child, then apply the
participant declaration rules to the following as though it had been specified in the parent.

CRn: #PCn Completeness Multiplicity Cardinality
where
Completeness = optional unlessnodot or soliddot Porsoliddot N > 0
Multiplicity = single wvalued if nodot or hollow dot or solid dot Z or soliddot N < 2
Cardinality = cardinalityN: NifsoliddotN > 1
If the child has no participant property with a get property operator for the parent, then apply the
participant declaration rules to the following as though it had been specified in the child.

PRn: #CCn Completeness Multiplicity Cardinality
where
Completeness = optional unlessno dot or soliddot P or soliddot N > 0
Multiplicity = single wvalued if nodot or hollow dot or solid dot Z or soliddot N < 2
Cardinality = cardinalityN: NifsoliddotN > 1

10.6.1.5 Participant

For each class Cn, for each participant property named Pn, with property operator PO, and inverse class
Cn’, declare

Let 0OID = #(Cn:Pn PO Cn’) if thepropertyisnot suffixed (in)
OID = #(Cn:Pn PO +Cn’) iftheproperty issuffixed (in)
participant:0ID has lowClass: #participant.
participant:0ID has level: instance.
participant:0ID has plicity: explicit.

If the specificationisPn or Pn: _ (i.e., the get property operator) and the participant is a fact, declare the
implicit participant instance as follows:

Let OID = #(- Cn:Pn:Cn)

participant:0ID has lowClass: #participant.
participant:0ID has level: instance.
participant:0ID has isFact.

participant:0ID has plicity: implicit.

10.6.1.6 Attribute

For each class Cn, for each attribute named Pn, with property operator PO, level L (instance or class), and
type Tn, declare

Let OID = #(Cn:Pn: boolean) ifthereisnoargument
OID = #(Cn:Pn PO Tn) if the property isnot suffixed (in)
OID = #(Cn:Pn PO +Tn) if the property is suffixed (in)

attribute:0ID has lowClass: #attribute.

attribute:0ID has level: L.

attribute:0ID has plicity: explicit.

If the specification isPn or Pn: _ (i.e., the get property operator) and the attribute is a fact, declare the
implicit attribute instance as follows:

Let OID = #(- Cn:Pn:Tn)
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attribute:0ID has lowClass: #attribute.
attribute:0ID has level: L.
attribute:0ID has isFact.

attribute:0ID has plicity: implicit.

10.6.1.7 Operation

For each class Cn, for each operation named Pn, with property operator PO, level L (instance or class), with
N arguments of type Tni , where Tni = obj ect if notypeisspecified,and Ti = +Tni if (in) is spec-
ified, otherwise Ti = Tni , declare

Let QPnT = Cn:Pn : boolean ifN=0
QPnT = Cn:Pn PO T1 ifN=1
QPnT = Cn:Pn PO [T1, T2, .., TN] ifN>1
OID = #QPnT

Operation:0ID has lowClass: #operation.

operation:0ID has level: L.

operation:0ID has plicity: explicit.

For each argument K of type Tn, K = 1 to N, declare

argument:# (QPnT:K) has position:K.
argument :# (QPnT:K) has type:#Tn.

If updatable, declare

argument:# (QPnT:K) has isUpdatable.

If an input, declare

argument:# (QPnT:K) has isInput.
10.6.1.8 Constraint
For each class Cn, for each constraint named Pn, level L (instance or class), declare

constraint:# (Cn:Pn:boolean) has lowClass: #constraint.
constraint:# (Cn:Pn:boolean) has level: L.
constraint:# (Cn:Pn:boolean) has plicity: explicit.

10.6.1.9 Uniqueness constraint

For each class Cn, for each uniqueness constraint N with Mproperties, declare

Let QPnT = Cn:ucN: T1 ifM=1

QPnT Cn:ucN: [T1, T2, .., TM] ifM>1

OID = #QPnT
uniquenessConstraint: OID has lowClass: #unigquenessConstraint.
uniquenessConstraint: OID has class: #Cn.
uniquenessConstraint: OID has name: ucN.
uniquenessConstraint: OID has level: class.
uniquenessConstraint: OID has plicity: explicit.

For each property K withtype T, K = 1 to M in order of appearance in the graphic,

Tk = +T
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10.6.1.10 Responsibility

For each responsibility, with oid O D as determined above, with a class named Cn and a property named Pn,
declare

responsibility:0ID has class: #Cn.
responsibility:0ID has name: Pn.
responsibility:0ID has propertyOperator: POn.

where POn is
get if the property operator is
set if the property operator is : =
unset Iif the property operatoris :!=

add if the property operator is : +=
remove if the property operator is : —=

responsibility:0ID has visibility: Vis.
wherevis is

publ i ¢ if the property is unannotated
pr ot ect ed if the property is annotated by "["
pri vat e if theproperty isannotated '|| "

If the responsibility is afact, declare
responsibility:0ID has isFact.

If thereisnot asuffixmulti valued, declare
responsibility:0ID has isFunction.

If thereisnot asuffix optional, declare
responsibility:0ID has isTotal.

If there is aread-only suffix or the responsibility is a constraint, or an attribute or participant property with a
get property operator, declare

responsibility: OID has isReadOnly.

If there is a constant suffix, or the responsibility is a uniqueness constraint, declare
responsibility: OID has isConstant.

If thereisacardinality N suffix, declare

responsibility: OID has cardinalityN: N.
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10.6.2 Rewrite RCL to definition form clauses

RCL is rewritten to definition clausal form by rewrite rules that translate RCL into definition form clauses.
There are three sets of rewrite rules.

a) TheRCL used in queries and redlizations is rewritten to a syntactically simpler but equivalent form
by the mapping

Mg: RCL > Rcl

b) The RCL queries, declarations, and realizations are rewritten to an intermediate set of definition
form clauses by the mappings

MQ: QueryRCL = Clause
M(D: DeclarationRCL = Clause

M: RealizationRCL = Clause

The clauses produced by this mapping use predicate symbols, such as an arity 3 has, that are not part
of the vocabulary of an IDEF ;¢ theory. The U mapping adds the remaining arguments.

¢) Thedefinition form clauses are rewritten to add arguments for the sender and the input and output
states to the propositions.

U: Sender X State X Clause X State = Clause

The clauses produced by the v mapping use only predicate symbols that are part of the vocabulary
of an IDEF ;e theory.

A rewriterule of the form

LHS=>RHS

&l xxx

means to replace the LHS by the RHS and also add xxXx to the set to which the rewrite rules are being
applied.

The symbols in the rules are the syntactic symbols in the RCL syntax, augmented by abbreviations (see
Table 22).

Table 22—Symbols in rewrite rules

Symbol M eaning
Cn Class name
Pn Responsibility name
OID StateClassOid
K SimpleObject
Self, Var, CnVar, Ws Variables
Type Typeliteral
Arg Argument
Args Arguments
PO PropertyOperator
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Table 22—Symbols in rewrite rules (continued)

Symbol Meaning
I,V Objects
PV ResponsibilityValue
Pnv Pn:V Or Pn:=V Or Pn:!=V OFf Pn:+=V OF Pn:-=V
B, F, G, and H Sentences
Head Cn : Variable has Pn { PO Args ]
W,X,Y Meta symbols denoting lists of variables
X Listof variables freeintheLHS
p Predicate symbol
k Constant symbol not otherwise used
true, Term (not the logical constant t rue)

If a construct matches the LHS of multiple rewrite rules, the first matching rulein the list is used.
10.6.2.1 Declaration RCL

Declaration RCL is always stated in the context of aview. A declaration Cn: O D has Pn: K means that
Cn: O DhasPn: Kisafact. An axiom to that effect is added to the theory for the view.

Mgp(Cn:0ID has Pn:K) => fact (facts, OID, #(Cn’:Pn:T), K)

where Cn’ : Pn: T isthe qualified property name of the direct or inherited property for Pn.
10.6.2.2 Query RCL
mq(Sentence) => & M (Sentence)
10.6.2.3 Realization RCL
The renaming rule for quantification says that, for example, (W) (F) is exactly equivalent to (0(Z) (F’)
where F' is F with all free occurrences of W replaced with z. The formalization of exists, forall,
not, and if assumes that this rule has been applied to uniquely name the quantification variables.
A variable X in asentence F is aquantification variable if
X appearsfreeinF,
X does not appear in the head,
X does not appear freein the body less F.
A variable appears free in asentenceif it isnot bound by an exists or forall within the sentence.

Every variableis quantified by applying, in order, these rules.

a ForanRCL exists F, thequantificationisO(wW) (F).

Copyright © 1999 IEEE. All rights reserved. 225



IEEE
Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

ForanRCL forall F: G,thequantificationisO (W) ((F > O(Y) (G)).
b) ForanRCL not F, thequantificationis~O(W) (F).

ForanRCL if F then G,thequantificationisd(w) (F) > [ (w) (F) O Oww) (F O G).
¢) ForanRCL Head ifg.¢ F,thequantificationisO (z) (Head €« O(W) (F).

W represents the quantification variablesin F. Y represents the quantification variablesin G Z represents the
variablesin the head. If there are no such variables, thereis no quantification.

If avariable appearance iswithin multipleexists, forall, not, or if, itisquantified by the innermost
for which it qualifies.

Resalization RCL is mapped to clausal form according to rewrite rules below.
Thefirst group of rules rewrite RCL to smpler RCL.

If the left side contains had instead of has or was instead of is, then theright side contains had in place
of has andwas inplaceof is.

ﬂlS(Cn: Self has Pn) => Cn: Self Pn: (true.: boolean)
ﬂlS(Self { super } has Pn) => Self { super } has Pn: true.
9WS(Object.. { PathExpr } ResponsibilityValue) =>
9WS(Object has { PathExpr } ResponsibilityValue)
ﬂ{g(l has { PathExpr } PropertyExpr .. ResponsibilityValue) =>
9”5(1 has { PathExpr } PropertyExpr: V),
V has ResponsibilityValue
ﬂ{s(l has { PathExpr } (PropertyExpr: SimpleObject)
ResponsibilityValue) =>
9%5(1 has { PathExpr } PropertyExpr: SimpleObject,
SimpleObject has ResponsibilityValue
9%3(1 has Pn(Objects): V) => QWS(I has Pn (Objects,V))
ﬂ{S(I has Pn(Objectl, Object2, .., Objectn ) )=>
Mg(vi is Objectl),

Mg(v2 is Object2),

9WS(Vn is Objectn),
I has Pn: [V1, V2, .., Vn ]
Mg(T has Pn(Object) )=>
ﬂlg(v is Object),
I has PnV
ﬂ{s(object { super } has { PathExpr } ResponsibilityValue ) =>
I is Object,
QWS(I { super } has { PathExpr } ResponsibilityValue )

Mg(Objectl RelOp Object2)

>
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I1 is Objectl,
Mg (11 has RelOp(I2))

9‘/[5(\7 is Object ..{ PathExpr } PropertyExpr) =>
f]VlS(Object has ..{ PathExpr } PropertyExpr:V)

MS(Variable Var: Type is Object)=> variable Var: Type, MS(Var is
Object)

MS(Var: Type is Object) => variable Var: Type, MS(Var is
Object)

MS(Var is SimpleObject) => Var = SimpleObject

MS(X is Objectl : Object2 ) => V1 is Objectl, V2 is Object2, X = V1
: V2

Mg(x is list( Object ) => X is [Y where Y is Mg(Object)]
MS(X is set( Object ) => MS(Y is list (Object), X is

set (list:Y))

MS(X is bag( Object ) => MS(Y is list (Object), X is
bag(list:Y))

Mg(x is [ Object 1) => Mg(x is list (Object))

f]VlS(X is { Object }) => f]VlS(X is set (Object))

Mg(x is { }) => Mg(x is set(list:[]))

MS(I is {Object | Set } ) => MS(X is Object, Xs is Set, I is
set (list:[X|Xs]))

MS(I is {Object | List }) => _WZS(X is Object, Xs is List, I is
[X|Xs])

Mg(T is Cn(PV1,PV2,.,PVn)) =>

I is Cn with (PV1,PV2,.., PVn)
leS(I is Cn with (PV1,PV2,..,PVn)=>

ﬂlg(v,1,9v1>,
9WS(V,2,PV2),

MS(v,n,PVn) ,
#Cn has with:[ Mg(a,1,Pv1l) Mg(a,2,Pv2),.., Mg(a,n,PVn),T]
MS(V,J,Pn(Objectl,Objeth,... ,Objectm)) =>

Mg (vl is Objectl),

Mg(vi2 is Object2),

Mo(Vim is Objectm),
S
ﬂ¢5(a,J,Pn(Objectl,Objectz,m ,Objectm)) => Pn:[VJ1l,VJ2,..,VJn]

ﬂ{s(a,J,Pn(Objectl)) => Pn:vJl
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ms(a,J, Pn:V) => Pn:V

Ms(a,J,Pn) => Pn:true.

MS(X is set( Objects => WS(Y is list (Objects), X is set(list:Y))
MS(X is set( Objects => f]\/lS(Y is list (Objects), X is set(list:Y))
MS(X is bag( Objects => MS(Y is list (Objects), X is bag(list:Y))
Mg(x is [ Objects ] => Mg(x is list(Objects))
MS(X is { Objects } => MS(X is set (Objects))

MS(X is list( Objectl, Object2,.., Objectn )=>
Mg (Y1 is Objectl),

MS(YZ is Object2),

ﬂ{S(Yn is Objectn),
X is [ Y1, Y2,.., ¥Yn ]
ﬂlS(V is UnaryOp Object) =>
M(1 is Object),
M(I has ‘UnaryOp’ :V)
ﬂ{S(V is Objectl BinaryOp Object2) =>
M (11 is Objectl),
M(12 is Object2),
M(11 has ‘BinaryOp’:[I2,V]
ﬂlS(V is Object where Sentence) =>
ﬂ4(Sentence),
M is Object)
ﬂ{s(if F then G else H endif) =>
9WS(if F then G endif 0 if not F then H endif))
Mg(if F then G endif) => if Mg(F) then Mg(G) endif
Mg(x , G) => Mg(F) , Mg(G)
Mg(F or G) => Mg(F) or Mg(G)
Mg (not F) => not Mg(F)
Mg(forall F: G) => forall Mg(F) : Mg(G)

ﬂ{s(for Accs all F: G => for QWS(ACCS) all 9WS(F) : 9WS(G)

ﬂlS(Head ifger B) => 9WS(Head ifger B, post true)Bhasno post

Mg (Head ifyer B) => Mg(Head ifger pre true, B) Bhasnopre
ﬂ{S(Head ifger B) => 9WS(Head if4ef pre true, B, post true) Bhas

no pre no post
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ﬂﬁ;Cn: Self has Pn PO Args ifgeg

pre PreSentencel,
pre PreSentenceN,
Sentence,

post PostSentencel,

post PostSentenceM)

IEEE
Std 1320.2-1998

=>
Cn: Self has Pn PO Args ifg.¢ Sentence
Cn: Self has (-Pn) PO Args ifges
PreSentencel
or ...
or PreSentenceN
Cn: Self has (+Pn) PO Args ifg.¢
PostSentencel,
vy
PostSentenceM

The next group of rewrite rules rewrite RCL to clausal form. Here, T and vV are SimpleObjects.

M (Head ifges B)

9W(Cn:Self has Pn PO Args)
Variables)

el ﬂﬂD(responsibility: #(Cn

M (variable Variable
M (+Type)

Type)

ﬂ4(class_qname)
ﬂ4(class_qname:[ Types])
ﬂ4([Type1,Type2,mTypen])
M(I has Pn PO V)

M(TI had Pn PO V)

ﬂ4(Self super has Pn PO V)
ﬂ4(Self super had Pn PO V)
ﬂ4(not F)

M, 6)

ﬂ4(F or G)

M(if F then G endif)

=>

=>

=>

M (dead) € M (Sentence)
ﬁas(#Cn:Self,#(Cn:Pn PO 9W(Types)),

:Pn PO Types) has isRealized)

Variable 1 ﬂ4(Type)

+ M (Type)

#class_gname
#(class_qname:QW([Types]))

(M (Typel), M(Type2),.. M(Typen)])
has(1, pn PO V)

had(t, pn PO V)
ﬁaS(super(Self:#Cn), Pn PO V)
ﬁadlsuper(Self:#Cn), Pn PO V)

~0W) ( M(F))
M) O M)
Mr) O M)

~O(mwy ( M(F)) O (OL(w) ( M(F)) OO(Y)( MEFE O0G)))

M (exists F) = 0m) ( M( F))
M (forall F: G) =>
M(ws is list (W where F )) O iS(Ws,foreach(k,X))

&l is(ws, foreach (k, X)) €
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Ws = [W|Rest] > M(c) O iS(Rest, foreach (k, X))
M(for Acc all F: G) =>
M(Ws is list (W where F )) 0O iS(Ws, foreach(k, X, Acc))

&l iS([W|Rest], foreach(k, X, Acc’)) €

M (

MS(ACC is accumulator(initial (Acc’..previous), final: )),
G,

MS(ACC” is

accumulator (initial (Acc..current), final (Acc’..final))

) O

1S(Rest, foreach (k, X,Acc’")

M(ws is [SimpleObject where F ]) => 1S(Ws, listof (k, X))
Qlis (s, listof (k, X)) €
isList (ws) O

O ( M(F) > SimpleObject O ws ) O
O(w) ( SimpleObject O ws > M(F) )

M (assert F) => M( not F) > exception(‘assertion failure: F’)
M (Other) => Other

In the mapping rules above

— Arguments are mapped to types and variables according to the syntax for arguments (see Table 23).

Table 23—Mapping of arguments to types and variables

Argunent s Types Vari abl es
Var object Var
Var:Type Type Var
Var (in) +object Var
Var:Type (in) +Type Var
[Argl,Arg2,..,Argn] [Typel, Type2,.., Typen] [Varl,Var2,..,Varn]

—  wrepresents the quantification variablesin F. If there are no such variables, omit the quantification.
— Y represents the quantification variablesin G. If there are no such variables, omit the quantification.

— The properties Pn1 through Pnn must constitute a uniqueness constraint ucN for a value class Cn
wherev’ 5 = Vi if Pni isthe jth component of ucN of class Cn.

— Self super can be used only within a redlization. Cn is the class for which the realization is
specified.

— had and was can be used only within a post sentence.
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10.6.3 Add arguments for sender and state

Update is formally defined by considering an update operation to map the state of the view to a new state.
The state of aview isits set of facts. The initial state is the set of facts declared for the view. Each proposi-
tion relates an input state to an output state. To carry thisout, Si and So are added as arguments to the prop-
osition and the proposition becomes

has(Si, I, C:=pP, V', So).

If aproposition fails, then the state is unchanged.

It is assumed that the intended effect of the update mappings is cumulative, in the order the sentences are
written.

An RCL sentence consists of logically connected propositions, such as the conjunction

I has Pn: VvV, I’ has pn’ :v’ .

If there are no state changes, then the order of evaluation does not matter. But if there are state changes, then
it does matter. The formalization assumes that the order of evaluation, if it should matter, is the order in
which the propositions are written |eft to right. The sentence above is mapped to

0O (s) ( has(si,I,pn:v,s) 0 has(s,I’,Pn’:V’,S0) ).

The output state S of the left conjunct isthe input state to the right conjunct. Thisis a purely declarative con-
junction, exactly equivaent to

O (s) ( has(s,1’,pn’:V’,So) O has(si,I,Pn:V,s) ).
Either conjunction has the same effect as solving the RCL conjunction in the order written.
10.6.3.1 Query
A query sentenceistrueif itislogicaly implied by the view and itsinstances. The initial state for aquery is
whatever the declarations for the metamodel and the view declared. The declared facts are the input state for
the query.
'U( Si, € B, So) => 'U(facts,B, So)

10.6.3.2 Realization

The update mapping is defined for each syntactic form of clause, proposition, and sentence. Universally
quantified sentences will raise an exception if any updates occur.

U(si, has(c:1,p,v) € B, so) => has(c:1,si, I,P,V, So) €
U(C:I,S1, B, So)

U(CI,si, has(1,Pp), so) => has(cI,si, I,P, So)

U(CI,si, 1S(V,Ex) € B, So) => 1s(CI,si, V,Ex, So) € U(CI,Si, B,
So)

U(CI,Si, 1S(V,Ex) So) => 1§(CI,Si, V,Ex, So)

Yv(CI1i,si, vi T So) =>Vlg; T OSi = So

U(CI,Si, ~F, So) => ~[(S) ( vY(cI,si, F, S)) O si = so
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U(CI1,si, F OG, So) => U(CI,si, F, s) O U(cI,s, G, So)
U(CI1,si, F O G, So0) => U(CI,si, F, Sso) O vU(CI,si, G, So)
v(CI,si, O(variables) (F),So) => [(Variables) (U(CI,Si, F , So) )
U(CI,si, O(variables) (F),So) =>

O(Variables) (U(CI,Si, F , So) U

~(Si = So) > exception(‘updates occurred ', F) )
v(CI,si, Other, So) => Other 0O Si = So

10.6.3.3 Pre-conditions
The update mapping for a pre-condition ensures no state change by doing U (c1,si,Clause,Si) .

10.6.3.4 Post-conditions

The update mapping for a post-condition does Upost (CI,Si,Clause, So). Upost usestheinitial Si

for had and the final so for everything else. The update mapping for a post-condition ensures no state
change.

Upost (CI,5i, had(1,?,v),so0) =>has(c1,si,I,P,V,si)
Upost (CI,si,Other,So) => U (CI,So,Other, So)

10.7 Formalization of the modeling constructs

This clause provides an overview of the relation of the graphics, RCL, metamodel, and axioms for each of
the modeling constructs.

The following features have been omitted as a simplification. Their inclusion would complicate the formal-
ization without affecting it in any substantial way.

— Aliases. They are assumed to have been replaced with their real names.

— Typeany. All uses of any are assumed to have been replaced with object.

— Intrinsic properties and dependent classes. These are derivative ideas based on the notions of total,
constant, and function.

— Avrithmetic. Axioms for integer and real arithmetic are assumed.

— Changes to a value of an attribute used for the denotation of a metamodel instance, such as #Cn
denoting a classwhere Cn isthe class name.

Formally, there is a firm distinction between a symbol and its value in an interpretation. There is a further
distinction between a symbol’s value in any interpretation and its value in the intended interpretation. To
fully maintain these distinctions, a string of symbols such as
1+3
would be described by something like
1+3 isthe result of applying the function assigned by the interpretation to the function sym-
bol + to the value assigned by the interpretation to the constant symbol 1 and the value
assigned by the interpretation to the constant symbol 2, wherein the intended interpreta-
tion, the symbol 1 isassigned theinteger 1 and the symbol 2 is assigned the integer 2
and the symbol + is assigned the integer addition function.

In the lessformal style used in the descriptionsin this clause,
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1 + 3istheresult of applying the integer addition functionto 1 and 3.
All such statements are an abbreviation for the more formal version.
10.7.1 Objects

An object is a discrete thing, distinct from all other objects. Each object has an intrinsic, immutable identity
(oid), independent of its property values and classification. An oid is abstract: it is aways denoted indirectly,
by afunction application or aliteral.

Throughout the formalization, in any expression such as “an object V,” V should be understood to be the oid
of the object.

10.7.2 Views

A view is acollection of classes and other views. The anonymous top-level view contains the classes repre-
senting the metamode! of IDER;e-

Views are nested in view hierarchies; every user-defined view has one parent view. Every user-defined view
has a unique, fully qualified name, Vn. For a view with the simple name Vsn and the top-level anonymous
view as parent view, Vn = Vsn. For aview with the simple nameVsn and a parent view with the fully qual-
ifiednameVn' ,Vn = Vn’ :Vsn.

For aview V with the fully quaified name Vn, V = #Vn. In other words, the # function maps Vn to the oid
V. Throughout the formalization, in any expression such as“aview V,” V should be understood to be the oid
of aview.

The formalization assumes that fully qualified names are used for all classes.

10.7.3 Classes

Every object is classified into one or more classes and is an instance of each of those classes. The set of
objects classified into a classis the extent of the class. Each class has a set of responsibilities. A responsibil-
ity is a constraint or a property, and a property is an attribute, participant property, or operation. A non-
derived attribute or participant property is called afact property. A value of afact property is called afact.
Every class is defined in exactly one view and has a unique name Csn within that view. For a parametric
class, suchasset ( T) , thesimple, unqualified name, Csn, isset ( T) inthe graphicsand RCL, but for the

purpose of formalization, Csn = set:[T].

Every class has aunique, fully qualified name, Cn. For a class defined in the metamodel, Cn = Csn. For a
class defined in any other view, Cn = Vn: Csn, where Vn isthe fully qualified name of the view.

For aclass C withthenameCn, C = #Cn. Throughout the formalization, in any expression such as “aclass
C” C should be understood to be the oid of aclass.

There are two kinds of classes:. state classes (sClass) and value classes (vClass).
10.7.3.1 State class
The objectsin a state class are changeabl e in two ways: instances are created and deleted, and the facts about

an instance can change. The identity of a state class object is denoted by an expression of the form
#DeclTerm. For example, every class is an instance of the state class named class and the oid of an
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instance named Cn is #Cn. Formally, #Cn is afunction application: the function denoted by # is applied to
the name Cn to yield an oid.

Every classimplements atype.

Table 24 shows expression forms that denote state class instance oids in the formalization.

Table 24—Expression forms denoting state class instance oids

Expression form Oid of

#Cn Class

#(Cn:Pn PO T) Responsibility

#(-Cn:Pn PO T) Implicit responsibility

#(Cn: (-Pn) PO T) Pre-condition of responsibility # (Cn:Pn PO T)

#(Cn: (+Pn) PO T) Post-condition of responsibility # (Cn:Pn PO T)

PO isoneof the property operators, :, :=, :!=, :+=, :-=.

For aresponsibility, T is an annotated type or alist of annotated types of the arguments. For an input argu-
ment, T = +T’ where T’ isthe type of the argument. For an output argument, T is the type of the argu-
ment.

10.7.3.2 Value class

The objects in a value class do not change; they are pure values. The set of instances is fixed and the facts
about an instance are fixed.

Table 25 shows expression forms that denote val ue class instance oids in the formalization.

Table 25—Expression forms denoting value class instance oids

234

Expression form Oid of
String An instance of string
Identifier An instance of identifier
Integer An instance of integer
Real An instance of real
truet An instance of boolean
falset An instance of boolean
SimpleObject : SimpleObject An instance of pair(T1,T2)
SimpleObjectList An instance of list(T)
{} The empty set
#Cn:value (P,V,Value) An instance of avalue class.
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10.7.3.3 Collection and pair classes

The built-in pair and collection classes set, bag, and list are parametric value classes. Every class has aname,
Cn. For the collection and pair classes, for any type T, T’ , the names of the classes are as follows:

pair: [T, T']
collection: [T]
list:[T]

set: [T]

bag: [T]

A parametric value class can be used as the type of a variable or argument with an RCL TypelLi t er al
such asset (pair(identifier,object)). The corresponding expression denoting the instance of
the state classparametricVClass, #Cn, iS# (set: [# (pair: [#identifier, #object])]).

10.7.4 State

The set of all facts for al state class instances constitutes the state of the views. The initial state isjust what
is declared by declaration RCL. An update messages issued by an RCL query or within the realizations of a
responsibility produces a whole new state. If a query or responsibility fails, no updates are made. (The
updates made by successful nested messages are effectively backed out.)

The concept of state isformalized by an abstract data type. Axioms are given defining the known properties
of theinitial state, the constructors taking a state into anew state, a recognizer, and a selector that gets a fact
based on a given state.

10.7.4.1 Initial state

The declaration clauses for aview constitute the axioms that define properties of theinitial state, denoted by
the constant symbol facts. A declaration Cn:0ID has Pn:K declaresit afact that the class named Cn
has an instance with an oid of 0ID and that instance has a property named Pn with a value of K. For each
such declaration, the theory for the view acquires an axiom to that effect.

fact (facts, OID, #(Cn’:Pn:T), K)

where Cn’ : Pn: T isthe qualified property name of the direct or inherited property for pn.

10.7.4.2 Constructors

The constructors remember and forget have the signature I x P x V%S> S where

I isthe set of instances
Pisthe set of properties
7isthe set of values
Sisthe set of states

10.7.4.3 Recognizer

Thei sSt at e axioms defineswhat a stateis.

isState (facts)
isState (remember (I,P,V,S)) €« isState(S)
isState (forget (I,P,V,S)) € isState(S)
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10.7.4.4 Selector
The arity 4 fact predicate
fact(s, I, P, V)

means that in state S, instance I has property P value v. The arity 4 fact predicate is used by the implicit
realization for the recall property of state class instances.

fact (remember (1,P,V,S"),I,P,V) €& true

fact (remember (1’,p’,v’,s’),I,P,V) € ~( I=I' O p=p’ Ov=v’ ) O
fact(s’,I,P,V)

fact (forget(1,P,v,S"),I1,P,V) & false

fact (forget (1’,p’,v’,S8"),1,P,V) € ~( I=I' O p=p’ Ov=v’ ) O
fact(s’,I,P,V)

10.7.5 Value

In concept, all instances of all value classes always exist. A literal specifies an instance by giving the values
of properties constituting a uniqueness constraint. The class author defines a realization for the uniqueness
constraint that derives the instance’'s fact property values from the argument values, then says that the
instance has those fact property values.

The concept of value is formalized by an abstract data type. Axioms are given defining the initial, constant
value and a selector that gets afact based on the value. There are no updates.

10.7.5.1 Initial value

Theinitia value for avalue classnamed Cnis#Cn:value (P,V,Value). Theinitia value of the value
ADT isvalue (P,V, Value).

10.7.5.2 Selector
The selector isthe arity 3 fact predicate

fact (Value, P, V)

means that Val ue has property P value V. The arity 3 fact predicate is used by the implicit realization of
the recall property of avalue class instance.
fact (value (P’ ,V’ ,Rest),P,V) &
if P = P’
then
vV =V’
else
fact (Rest, P, V)
endif

10.7.6 Generalization
Generalization is concerned with the definition of objects. Thereisasingle top class, called object. Every

other class has at least one superclass. The meaning is that an object that is an instance of aclassis also an
instance of each superclass of that class.
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10.7.6.1 Subclass
C isag C’ meansthatinstate S, C isadirect subclassof classC’.

C isag C' €
fact (s,c,#(class:highCluster:object),Clu) [
fact (s,clu, # (cluster:super:object),C’)

Thereflexive, transitive closure of isagis isag* and theirreflexive, transitive closureis i sag+.
The subclass to superclass relation is acyclic.

C isagt C €& false
10.7.6.2 LowClass

A subclass is said to be lower than its superclass. If an object is an instance of a class C and not an instance
of any subclass of C, then Cisalowclass of the object. Every object has at least one lowclass. A value class
instance has exactly one lowclass.

Ig&l1C¢C

meansthat in state S, | isadirect instance of C, itslowClass.

For state classinstance T,

I &1 C € fact(S,I,# (object:lowClass:object),C)
For value classinstance | , including the collection and pair classes,

I &1 #Cn €
I = #(Cn:Type) :value (P’ ,V’,Value),
fact (S, #Cn, # (parametricVClass:nameCn:identifier),Cn),
fact (S, #Cn, # (parametricVClass:type:list (class)), Type)
€1 #Cn € I = #Cn:value(P’,V’,Value), ~(Cn = Cn’ :Type, isList (Type))
€1 #pair(T1,T2) € I =Vl : V2 OVl g1 T1 O V2 €1 T2
€1 #1list(T) < isList(I),lub(S,I,T)
€1 #boolean € I = true, O I = false,
€1 #identifier & isIdentifier (I)
€1 #character €& isCharacter (I)
€1 #string € isString(I)
&1 #integer €& isInteger (I)
€1 #real € isReal (I)

H H H H H H H H H

The reflexive, trangitive closure of €51 is€ 1 * and theirreflexive, transitive closure of €51 is€ 1+.
Except for #cl ass, thelowclassrelation is acyclic.

C &1+ C €& (C = #class)
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10.7.6.3 Instance

I1&C

means that in state S, I isan instance of C.
I & C <€ I &1 C’ OcC’ isagr C
10.7.7 Type

A classimplements atypeif it has all the responsibilities of the type. An object hastype T if the object isan
instance of a class that implements type T. Every class implements a type of the same name. Class #Cn
implements type Cn. A type T is a subtype of type T/ if T includes all the responsibilities of T’ . Unlike a
class, atype does not have instances. Subtype is not the same as subclass. Subclass implies subtype, but not
the other way round.

The object type relation is formalized by the 1 predicate and subtyping by the <: predicate.
10.7.7.1 isType

isType (S, T)
meansthat instate S, T isatype.

isType (S, bot)
isType (S, Cn ) € #Cn isag* #object

10.7.7.2 Subtype Of

T <:4 T/

meansthat in state S, T isasubtype of T' . Subtype is reflexive and transitive.
For all typesT, T’

bot <:4 T

T <:g T" € T isag* T’

#(Cpn:T) <: #(Cpn:T’) € T <: T/

<1

[T|Ts] <: [T’ |Ts’] € T <: T’', Ts <: Ts’
10.7.7.3 Type Of

Vig T

means that in state S, object VistypeT.

VigT € V &1 #Cn O Cn <:4 T

From these definitions, it followsthat forall I, T, T’/,ifI 1y TandT <:4 T’ then I 15 T'.
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10.7.7.4 Least Upper Bound
lub (S, List,T)
meansthat in state S, every member of List istype T, and T isthe least type for which thisistrue.

Thetype bot isthe only type that is not implemented by any class. Therefore, no object hastypebot. The
type bot isthe least upper bound of an empty collection of types. So a collection class literal for an empty
collection, suchas1ist (T) : [], hasthelowclass 1ist (bot) . Thisistheonly use of thetypebot.

lub(S,List,T) <
(List = []) =2 (T = bot) 0O
OM) (M O List > M 1gT) O
O(T’) (lub(S,List,T’) = T <:g T")

10.7.8 Responsibility

Each class has a set of responsibilities. A responsibility is a constraint or a property; and a property is an
attribute, participant property, or operation.

The responsibilities for a class are stated with the graphics. For example, Figure 103 states that class Cn has
an operation named Pn that has two arguments.

Cn

(op) Pn: [V1,V2]

Figure 103—A responsibility of a class stated graphically

Cn isaclass name, Pn isaresponsibility name, and [ V1, V2] isthelist of arguments. In this example, no
types are specified for the arguments, so each argument’stypeisobject.

In the formalization, every responsibility has at least one argument. If a responsibility has no arguments
specified in the graphics, asingle (output) argument of type boolean is assumed.

Every responsibility is defined in exactly one class. Every responsibility has a unique, fully qualified name,
QPnT = Cn:Pn PO Type

where Cn isthe fully qualified name of the class, Pn isthe simple name of the responsibility, POisthe prop-

erty operator (i.e.,:, :=, :!= :+= or :-=) andType isthetype of the single argument or alist

of the types of the multiple arguments. For the example, the qualified property name, QPnT, is

Cn:Pn: [object,object].

As part of the formalization, the graphics are restated using declaration RCL, such as

operation: #(Cn:Pn:[object,object]) has lowClass: #operation.
operation: #(Cn:Pn:[object,object]) has class:#Cn.

Here, #Cn denotes an instance of the classnamed class and # (Cn:Pn: [object, object]) denotes
an instance of the class named operation that is associated with Cn.
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Intuitively, such declarations populate the metamodel. The relevant fragment is shownin Figure 104.

object

(pp) lowClass

ra

class responsibhility

ﬂ (pp) class

=

sClass property

oplration

Figure 104—Metamodel fragment showing responsibility

For aresponsibility R with the fully qualified name QPnT, R = #QPnT. In other words, in the intended
interpretation, the # function maps QPnT to the oid R. Throughout the formalization, in any expression such
as“aresponsibility R” R should be understood to be the oid of aresponsihility.

Formally, aresponsibility isarelation R, ,,—a et of N-tuples, where N is the number of arguments plus 3.
For the example, R., o, isaset of 5-tuplesof theform< Si, I, V1, V2, So >, whereSi istheinput state,
| isthereceiving instance, V1 isthe value of the first argument, V2 is the value of the second argument, and
So is the output state. All such relations are derivable from a single arity 6 has predicate where
/iaS(CI, Si,I,P,V,So) meansthat with input state Si , instance | has a property P value V and the
output state is So. (CI isnot relevant here). R.,p,, is derivable by

Repn = { <Si,I,V1,V2,S0> where

has(Cc1,si,I,#(Cn:Pn:[object,object]), [V1,V2],S0) }
If the arguments are partitioned into input and output arguments, for example V1 input and V2 output, then
the relation R, definesarelational mapping M.z, @ Eg* Eo, X Egject 2 Egpject X Es. The
relational mapping can be declared total or partial, and single-valued or multi-valued. The default is total,
single valued.

A single-valued relational mapping is afunctional mapping. The unqualified term “mapping” means a func-
tional mapping.

10.7.9 Realization

A redlization states the necessary and sufficient conditions that the receiver object has the property value.
Syntactically, aredlization is

class_gname: Variable has responsibility name {:Variables} ifg.¢

Sentence.

240 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg; (IDEFpjecr) Std 1320.2-1998

In Figure 105, Cn is aclass name, Pn is aresponsibility name, and V is the argument variable (list of argu-
ment variables). No argument types are specified in the example.

Cn

Pn:Vv

Figure 105—Class Cn graphically

Therealization RCL is

Cn: Self has Pn: V ifg4.r Sentence.

Self is the receiver—the object being asked to meet the responsibility. The sentence typically contains prop-
ositions (often messages) using the variablesin V. These propositions so constrain 'V that they define values
for thevariablesin V.

Read declaratively, aredlization saysthat the responsibility ismet (i.e, itistruethatCn: Self has Pn:
V) if the Sentence istrue. Read procedurally, arealization saysthat to solve for the output variables, solve
the sentence. Informally, solution can be thought of as a computation asin any programming language.

In the formalization, the realization RCL is mapped by a mapping M to
ﬁaS(CI, Si, Self, #(Cn:Pn:Type), V, So) €& M(Sentence).

Formally, solution means that the input state, receiver, and input arguments map (by the relational mapping)
to the output arguments and output state. With an adequate proof technique, solution means proof. In other
words, to prove that

has(cI, si, Self, #(Cn:Pn:Type), V, So)

istrue, prove that the Sentence istrue. (The implication states only theif direction. The only-if direction
isexplained in 10.3.11.)

10.7.10 Relationships

A relationship relates the instances of one class to the instances of another (possibly the same) class. In other
words, a relationship is binary and bidirectional. Each class has a participant property that has as its value
the identity of arelated instance. A participant property that is a fact has implicit realizations. The implicit
realizations maintain the consistency of the participant properties—instance | is related to instance |’ if
andonly if I ' isrelated to | . Consistency is maintained by two rules.

M essage to participant Also do for inverse
I has Pn :+= I’ I’ has Pn’ :+=1
I has Pn :—= I’ I’ has Pn’ :-=1

The message to the participant is governed by the samerules as for any other property-operator-implicit real -
ization. No relationship constraints are checked by add or r enove.
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If an add, arequest is made to add to the inverse participant property.

participant: Self has add:[I,V] ifg.s
Self super has add:[I,V],

I has inverse: P,
P has add:[V,I]

If ar enove, arequest is made to remove from the inverse participant property.

participant: Self has remove: [I,V] ifg.¢

Self super has remove:[I,V],
I has inverse: P,
P has remove: [V, I]

10.7.11 Creating a state class instance

The create,new,andi nit propertiesof sCl ass provide away to create and initialize any state class.
The modeler can override these properties, or define their own constructor properties using only the new
property of sCl ass.

Thecr eat e property of sCl ass creates an instance of a state class. The message to create an instance of
the class named Cn has the following form

#Cn has create([Pnl:V1,Pn2:vV2, .., Pnn:Vnl,I)
where

each Pni : Vi isadirect or inherited property Pni having initial value Vi . In the optional | argument, | is
the oid of the created instance. | can beavariable or #Const ant . Asan example,

# (dogView:dog) has create([tag:25071], #1luke)
Cr eat e getsanew instance and initializesit.

New is an instance level property of the metaclass sCl ass. It has both implicit and explicit realizations.
The explicit new: | getsthe next oid #Nand if #Nisnot equal to | asserts no current oid isequal to I, and
sends to the superclass for theimplicit new: | . Theimplicit new: | has an axiom causing So to include the
fact that | haslowclass#Cn. The explicit new: | thenadds | totheoidsand adds | asadirect instance.

The initiaization is done by setting each property to its value. Ani ni t property explicitly defined for a
classoverridestheinitinsC ass.

10.7.12 Adding an instance to a state class
The add property of sCl ass adds an instance to a state class. As an example,
# (dogView:dog) has add([tag:23], #buck)
The message to add an existing instance to the class named Cn has the following form:

#Cn has add([Pnl:V1l,Pn2:V2, .., Pnn:Vn],I)
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where each Pni : Vi isadirect or inherited property of Cn and each Pni isto have aninitia value Vi . The
argument | isthe oid of the instance to be added. The realization for add

a) Verifiesthat no superclass of Cn isin the same cluster asany classof |,
b) Removes any superclasses of Cn from the lowclasses of | ,

¢) AddsCn asalowclassof I,

d) Initidizesl .

Theresult isthat every superclass of Cn that isnot already aclass of | becomesaclassof | . If any Pni is
a property of an existing class of |, and is not a property of an added class, it is reset to Vi . Adding an
instance | to class Cn when Cn already contains | initializes | .

10.7.13 Deleting a state class instance

An instance of a state class is deleted by sending a delete message to it. Delete is a responsibility of
obj ect . An object deletes itself by sending apr opagat eDel et e to each | owd ass and then remov-
ing the lowclass. When all lowclasses have been removed, the object is effectively deleted. It can no longer
be sent messages. Thei sBei ngDel et ed marker prevents access to partially deleted objects because such
access could find a cardinality violation and raise an exception.

Thesd ass operation pr opagat eDel et e takesasar gunent itsinstance| to be deleted. | istold to
stop participating in any relationships and apr opagat eDel et e issent to each of its superclasses, but not
to#obj ect . Atobj ect (i.e, Sel f = #obj ect), all the participant property | owCl ass valueswould
be removed. Such removal would prevent | from being sent any messages.

To make | anonparticipant, each participant property valuel ' isremoved, and |’ isdeleted if need bein
order to prevent aviolation of its cardinality constraint.

10.7.14 Removing an instance from a state class

Ther enove property of sCl ass removes an instance from a state class. As an example,
# (dogView:dog) has remove:#buck

The message to remove an existing instance to the class named Cn is of the form
#Cn has remove:I

where | isthe oid of the instance to be removed.

Removing an instance from a class requires removing it from all subclasses and al total cluster superclasses.
The realization for remove

a) Sendsar enpve to each subclass.

b) Tells | tostop being aparticipant in any relationship.

c) ifSel f isalowclassof |, removesit and adds any superclass of Sel f thatisnot aclassof | .
d) forall highC uster istota, sendsar enpve to superclass

Theresult isthat Cn is not a superclass of any lowclass of | .

10.7.15 Coercions

No automatic coercions are done. Coercions can be done like any other operation. For example, the message
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V has asReal: X
obtainsthe real X for theinteger V.
10.7.16 is

The base case for the empty list with foreach is common.

1S(CI, s, [], foreach (K, X),S)
1S(CI1,S, [1, foreach (K, X, Acc),S)

10.7.17 Inheritance
A subclass inherits the responsibilities of its superclasses. An instance inherits the responsibilities of its

class. An inheritor can override one or more of its inherited responsibilities. The inheritance order is shown
in Figure 106. In Figure 106, the arrows are labeled with the predicate symbols used in the formalization.

superclasses

isa P8 -- Implicit
gL s P6 -- Implicit
P4
Mn P2
(cl) P15 -- Implicit
P13 -- Implicit
(cl) P11
P9
£
Cn
(cl) P7 —- Implicit
P5 -- Implicit
(cl) P3
Pl

Figure 106—Inheritance order

A message to an instance of Cn will search for amatch in this order:

— Cn to superclasses to object for explicit instance methods P1, P2...
— Cn to superclasses to object for explicit class methods P3, P4...

— Cn to superclasses to object for implicit instance methods P5, P6...
— Cn to superclassesto object for implicit class methods P7, P8...

— Mn to superclasses to object for explicit instance methods P9,

— Mn to superclasses to object for explicit class methods P11,

— Mn to superclasses to object for implicit instance methods P13,

— Mn to superclasses to object for implicit class methods P15,

— Etc

A message to #Cn searchesin the same order, but starts at explicit class methods, P3.
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A messageto Sel f super issued within arealization starts the search at the next point beyond that real-
ization, as though the realization had not been there for the search that found it. For example, if P2 isini-
tially found for the message to an instance of Cn, and P2 issuesaSel f super message, the search begins
at P3.

The search ignores private or protected responsibilities that are hidden to the message sender.

10.7.18 Message

A request to an object to carry out one of its responsibilities is called a message. A message consists of the

identity of the receiver, the name of a responsibility, the values of the input arguments, and the (typicaly

unknown) values (as variables) of the output arguments for the responsibility. Syntactically, amessage is
Object has Responsibility { PropertyOperator Object }

In the formalization, if thereisno PropertyOperator, : true;isassumed. Inthe messages

I has Pn: V
I has R: V

| isthereceiver, Pn isthe name of the responsibility, Ris aresponsibility, and v isthe argument value or
list of argument values. The receiver or an argument value can be a constant, an instance of a state class, an
instance of a value class, or a variable denoting any of them. In the formalization, the messages are mapped
to

has(c1,si,I,Pn:V,So)
has(c1,si,I,R:V,So)

respectively, where Cl isthe sender, Si istheinput state, and So the output state.
has(c1,si,I,Pn:V,So)

means that evaluating themessage I has Pn: Vsentby Cl instate Si with the values of the input argu-
ments given by V produces the value of the output arguments given by V and the new state So.

has(C1,si,I,R:V,So)

means that evaluating themessage T has R: Vsentby Cl instateSi  with the values of the input argu-
ments given by VV produces the value of the output arguments given by V and the new state So.

Si is mapped to So only if the proposition istrue. In other words, a state change is possible only if the mes-
sage succeeds. The new state will differ from the previous if the message was dynamically bound to one of
the implicit (i.e., built-in) realizations for updating a fact property (e.g., I has Pn:=V), or was bound to
an explicit (i.e., user written) responsibility that included a message that changed the state. If amessage fails,
no updates are done, including those of successful nested messages.

Thefirst kind of message, | has Pn: V, must be bound to aresponsibility R. The second kind of message,

I has RV, needsno binding, but the set | Rs of overridden responsibilities is needed for checking the
pre-conditions and post-conditions. Allowing for the property operators, the message axiom is

has(CI, si, I, RPnV, So)<€
bind (CI, Si, I, RPnV, POn, IRs, I’, R, VvV, T) O
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~(R &g #constraint) [0

~preQk (Si, IRs, V, T) > exception(‘pre condition’, IRs) 0O
cardinalityOk(CcI, Si, I’, POn, R, V, T) O

issue(CI, Si, I’', POn, R, V, So) U

~postOk(Si, IRs, V, So) > exception(‘post condition’, IRs)

has(ci, si, I, RPnV, So)é€
bind(CI, Si, I, RPnV, POn, IRs, I’, R, V, T) O
R &5 #constraint O
O(r’,R") (I’:R’ O IRs = issue(CI, Si, I’, POn, R’, V, So)

If amessage is bound to an implicit fact, a message isissued for the property operator by name.

issue(CI, Si, I’, POn, #(-QPnT), V, So) € -- implicit fact
fact (S,R, # (responsibility:isFact:boolean), true,) O
ﬁaS(CI,Si,R,POn:[I’,V],So) -- send message for POn
issue(CI, Si, I’, POn, R, V, So) €« -—- not implicit fact
~0(QPnT) (R = #(-QPnT) O
fact (S,R, # (responsibility:isFact:boolean), true,))

/i(lS(i:I’, Si, I’, R, V, So)-- realization
10.7.19 Implicit realizations

Animplicit realization is “built in” and not written by the modeler. An explicit reaization is one written by
the modeler.

Anthropomorphically, an object realizes a responsibility by derivation or memory. A responsibility realized
by memory is called afact.

Attributes and participant properties are facts unless declared a derivation by the suffix keyword derived.
(The derived keyword is intended for use on views for class producers, not on views for class clients.)
Constraints and operations are always realized by derivation.

An attribute or participant property can have a responsibility declaration for any or al the property opera-
tors. If any is declared derived, then all must be. If either participant is derived, then the other must be.

For any fact (i.e.,, nonderived) property, the graphics must include a get (:) interface specification for the
property. The interface specifications for any other property operator shall appear in the same class or a sub-
class.

An explicit override of afact should not be declared derived.

All facts and certain derivations have implicit realizations. An implicit realization can be overridden by an
explicit realization. Within an override, a message to super can be issued to the implicit realization.

10.7.19.1 Facts
Table 26 describes the use of thei sFact and plicity properties for afact responsibility.

Set andunset aredefined intermsof get , add, andr enove.
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Table 26—isFact and plicity properties for a fact responsibility

| sFact Plicity Oid Comment

true implicit #(-Cn:Pn:T) As aparticipant, thisinstance knows theinverse. Asa
characterigtic, theget, set, unset, add, and remove
operations provide the implicit realizations for the prop-
erty operators.

true explicit #(Cn:Pn:T) Override

true explicit #(Cn:Pn:=T) Override state class only
true explicit #(Cn:Pn:!=T) Override state class only
true explicit #(Cn:Pn:+=T) Override state class only
true explicit #(Cn:Pn:-=T) Override state class only
true explicit #(Cn:Pn:T) Override state class only

For a property Pn of type T which is not a single-valued collection, get gets a value for Pn, add adds a
new value for Pn, and r enove removes avalue for Pn, where the value hastype T.

Theget, set,unset, add, and remove properties are declared as a part of the metamodel like any other,
and their RCL realizations are mapped to clausal form like any other.

In 10.7.19.1.1 through 10.7.19.1.5, | isareceiver and V avalue.

10.7.19.1.1 (op) characteristic: get

If the property hasvalue v, the request succeeds with the state unchanged. If the property does not have value
Vv, the request fails with the state unchanged.

characteristic: Self has get:[I,V] ifgy.¢
I has recall: (Self:V).

10.7.19.1.2 (op) characteristic: set

If aset and, at thetime the request isissued, the property hasthevalue V' , the value, if not v, isremoved,
and the new value is added.

characteristic: Self has set:[I,V] 1ifg.¢

forall ( I has recall: (Self:V’), not (V = V') ):
(I has forget: (Self:V’),

if not I has recall: (Self:V)
then

I has remember: (Self:V)
endif.

10.7.19.1.3 (op) characteristic: unset

If anunset and the property has that value, the value is removed. If the property does not have that value,
the request fails.

characteristic: Self has unset:[I,V] ifg.¢
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I has recall: (Self:V),
I has forget: (Self:V).

10.7.19.1.4 (op) characteristic: add

If an add and the property already has value v, the request succeeds with the state unchanged.

If an add to a single-valued collection and the collection already has member v, the request succeeds with
the state unchanged. If there is no collection, the request fails. If thereis a collection and it does not contain
the added member, it isadded by ani nsert Last .

characteristic: Self has add:[I,V] ifg.r

if Self has isFunction,-- single valued
Self has type..superStar: collection(T),
then
I has recall: (Self:Collection),
Collection has insertlLast:[V,NewCollection],
if not Collection = NewCollection
then
I has forget: (Self:Collection),
I has remember: (Self:NewCollection)
endif
else
if not I has recall: (Self:V)
then
I has remember: (Self:V)
endif
endif.

10.7.19.1.5 (op) characteristic: remove
If ar enove and the property does not have value v, the request succeeds with the state unchanged.

If ar enove from asingle-valued collection and the collection has no member v, the request succeeds with
the state unchanged. If there is no collection, the request fails. If there is a collection and it contains the
member, it is removed.

characteristic: Self has remove:[I,V] ifg.¢

if Self has isFunction,-- single valued
Self has type..superStar: collection(T),
then
I has recall: (Self:Collection),
Collection has remove: [V,NewCollection],
if not Collection = NewCollection
then
I has forget: (Self:Collection)
I has remember: (Self:NewCollection)
endif,
else
if I has recall: (Self:V)
then
I has forget: (Self:V)
endif
endif.
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10.7.19.2 Derivations for basic types

Table 27 describes the use of thei sFact and plicity properties for a derived responsibility.

Table 27—isFact and plicity properties of a derived responsibility

| sFact Plicity Oid Comment
false implicit #(-Cn:Pn:T) Represents built-in operationsthat are directly
realized by axioms.

false explicit #(Cn:Pn:T) Derived

false explicit #(Cn:Pn:=T) Derived

false explicit #(Cn:Pn:!=T) Derived

false explicit #(Cn:Pn:+=T) Derived

false explicit #(Cn:Pn:-=T) Derived

false explicit #(Cn:Pn:T) Derived

The implicitly realized derived properties are declared as a part of the metamodel like any other, but no RCL
is specified for the realization. The implicit realization is overridden by supplying RCL for an explicit real-
ization.

Every theory includes

— Thedeclarations for these responsibilities, rewritten to definition clausal form.
— Theredlizations for these responsibilities.

The declarations are done in the same way as any other responsibility, except that the O D = #( - X)
instead of #X. (The declarations of the implicit responsibilities are in addition to the declarations for the
explicit responsibilities that result from declaring instances of the metamodel for the metamodel view.) The
declarations are then rewritten to definition clausal form like any other declaration RCL.

The definition clausal form for the axiom of an implicit realization is directly included as a part of every the-
ory (instead of being produced by a mapping from RCL). The axioms for the implicit realizations for deriva-
tions are given below.

The implicit realizations are used to avoid direct access in RCL to the state ADT, value ADT, the form of
Sel f, or the representation of the i nt eger, real ,identifier,character, string, pair, or
| i st typesassumed by their base theories.

For each of the types for which there is a base theory, the implicit realizations provide mapping between the
representation for value classes and the representation used in the theory (called Rep in the axioms). None
of these axioms need the sender, state, or type parts of the arguments, so asimplified has (_, _,Self,#(-
Cn:Pn: ),V, ) pétternisused for the arguments.

For each base type, the theory’s representation, Rep, is either the oid of the instance, Self, or thevalue of a
property named for the class, Cn. The theoryRep predicate relates Cn and Self to Rep.

theoryRep (1list,Rep,Rep) € isList (Rep)
theoryRep (pair,Rep,Rep) € isPair (Rep)
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theoryRep (character, Rep,Rep) € isCharacter (Rep)

theoryRep (identifier,Rep,Rep) € isIdentifier (Rep)

theoryRep (string,Rep,Rep) € isString (Rep)

theoryRep (integer, Rep, Rep) € isInteger (Rep)

theoryRep (real,Rep,Rep) € isReal (Rep)

theoryRep (Cn, (#Cn:Value) ,Rep) € fact (Value, #(Cn:Cn:#Cn),Rep)

10.7.19.2.1 (op) list: isEmpty

RCL Head: list: Self has isEmpty
M apping: {#list..instance} > {#boolean..instance}
Variables Self

/ias<_,_, Self, # (-Cn:isEmpty: ), true.), ) €
Cn = list 0O
theoryRep (Cn, Self,Self’) O
Self’ = []

10.7.19.2.2 (op) 1list(T): prefix

RCL Head: list(T): Self has prefix:[X:T,List:1ist(T)]
Mapping: {#(list:[T])..instance} x {#T..instance} > {#(list:[T])..instance}
Variables Self x X = List

has( , ,self,#(-Cn:prefix: ), [X,List]), ) €
Cn = list 0O
theoryRep (Cn, Self,Self’) O
theoryRep (T, X,X") O
List = prefixList (X’',Self’)

10.7.19.2.3 (at) 1list(T): first

RCL Head: list(T): Self has first: (X:T)
Mapping: {#(list:[T])..instance} > {#T..instance}
Variables Self 2> X

has( , ,Self,#(-Cn:first: ),X), ) €
Cn = list O
theoryRep (Cn,Self,Self’) O
Self’ = prefixList(X, )

10.7.19.2.4 (at) list(T): rest

RCL Head: list(T): Self has rest: (List:1list)
Mapping: {#(list:[T])..instance} = {#(list:[T])..instance}
Variables Self = List

ﬁaS(_,_,Self,#(—Cn:rest:_),List),_) <
Cn = list O
theoryRep (Cn,Self,Self’) O
Self’ = prefixList( ,List)

10.7.19.2.5 (at) pair(T1,T2): left

RCL Head: pair (T1,T2): Self has left: (X:T)
Mapping: {#(pair:[T1,T2])..instance} > {#T1..instance}
Variables Self 2 X

has(_, ,self,#(-Cn:left: ),x), ) €

250 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg; (IDEFpjecr) Std 1320.2-1998

Cn = pair 0O
theoryRep (Cn, Self,Self’) O
Self’ = X:

10.7.19.2.6 (at) pair(T1,T2): right

RCL Head: pair (T1,T2): Self has right: (Y:T2)
Mapping: {#(pair:[T1,T2])..instance} - {#T2..instance}
Variables Self > Y

has( , ,Self,#(-Cn:right: ),Y), ) €
Cn = pair U
theoryRep (Cn, Self,Self’) O
Self’ = :Y)

10.7.19.2.7 (op) identifier: isEmpty

RCL Head: identifier: Self has isEmpty
Mapping: {#identifier..instance} = {#boolean..instance}
Variables Self

ﬁaS(_,_,Self,#(—Cn:isEmpty:_),truet),_) <
Cn = identifier 0O
theoryRep (Cn, Self,Self’) O
Self’ =

10.7.19.2.8 (op) identifier: prefix

RCL Head: identifier: Self has prefix:[C:character,Ident:identifier]
Mapping: {#identifier..instance} x {#character..instance} - {#identifier..instance}
Variables Self X C > Ident
has(_, ,self,#(-Cn:prefix: ), [C,Ident]), ) €
Cn = identifier [

theoryRep (Cn, Self,Self’) O
theoryRep (character,C,C’) O
Ident = prefixIdentifier(C’,Self’)

10.7.19.2.9 (at) identifier: first

RCL Head: identifier: Self has first: (C:character)
Mapping: {#identifier..instance} - {#character..instance}
Variables Self 2 C
has( , ,Self,#(-Cn:first: ),C), ) €
Cn = identifier 0O

theoryRep (Cn, Self,Self’) O
Self’ = prefixIdentifier(C, )

10.7.19.2.10 (at) identifier: rest

RCL Head: identifier: Self has rest: (Ident:identifier)
Mapping: {#identifier..instance} - {#identifier..instance}
Variables Self = Ident
ﬁas(ﬁ,i,Self,#(—Cn:rest:i),Ident),7) <
Cn = identifier O

theoryRep (Cn, Self,Self’) O
Self’ = prefixIdentifier( ,Ident)
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10.7.19.2.11 (op) string: isEmpty

RCL Head: string: Self has isEmpty
Mapping: {#string..instance} 2> {#boolean..instance}
Variables Self

has( , ,Self,#(-Cn:isEmpty: ), true.), ) €
Cn = string [0
theoryRep (Cn, Self,Self’) O
Self’ = “”

10.7.19.2.12 (op) string: prefix

RCL Head: string: Self has prefix:[C:character,Str:string]
Mapping: {#string..instance} x {#character..instance} - {#string..instance}
Variables Self X C = Str

has( , ,sSelf,#(-Cn:prefix: ),I[C,Str]), ) €
Cn = string O
theoryRep (Cn, Self,Self’) O
theoryRep (character,C,C’) O
Str = prefixString(C’,Self’)

10.7.19.2.13 (at) string: first

RCL Head: string: Self has first: (C:character)
M apping: {#string..instance} = {#character..instance}
Variables Self 2 C

has( , ,Self,#(-Cn:first: ),C), ) €
Cn = string [
theoryRep (Cn, Self,Self’) O

Self’ = prefixString(C, )

10.7.19.2.14 (at) string: rest

RCL Head: string: Self has rest: (Str:string)
Mapping: {#string..instance} > {#string..instance}
Variables Self > Str

has( , ,Self,#(-Cn:rest: ),Str), ) €
Cn = string [O
theoryRep (Cn, Self,Self’) U
Self’ = prefixString( ,Str)

10.7.19.2.15 (op) integer: ‘+’

RCL Head: integer: Self has ‘+’:(Int:integer,Result:integer)
M apping: {#integer..instance} x {#integer..instance} - {#integer..instance}
Variables Self = Int X Result
has( , ,Self,#(-Cn: ‘+’: ), [Int,Result]), ) €
Cn = integer U

theoryRep (Cn, Self,Self’) O
theoryRep (Cn, Int,Int’) O
iPlus (Self’,Int’,Result)

10.7.19.2.16 (op) integer: ‘-’

RCL Head: integer: Self has ‘-'’:(Int:integer,Result:integer)
Mapping: {#integer..instance} x {#integer..instance} - {#integer..instance}
Variables Self = Int X Result
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has( , ,self,#(-Cn: ‘-‘ : ), [Int,Result]), ) €
Cn = integer O
theoryRep (Cn, Self,Self’) U
theoryRep (Cn, Int, Int’) O
iMinus (Self’, Int’,Result)

10.7.19.2.17 (op) integer: ‘*’

RCL Head: integer: Self has ‘*’:(Int:integer,Result:integer)
Mapping: {#integer..instance} x {#integer..instance} - {#integer..instance}
Variables Self = Int X Result

has( , ,self,#(-Cn:’*’: ), [Int,Result]), ) €
Cn = integer O
theoryRep (Cn, Self,Self’) U
theoryRep (Cn, Int, Int’) O
iTimes (Self’,Int’,Result)

10.7.19.2.18 (op) integer: ‘/’

RCL Head: integer: Self has ‘/’:(Int:integer,Result:integer)
Mapping: {#integer..instance} x {#integer..instance} - {#integer..instance}
Variables Self = Int X Result

has( , ,Self,#(-Cn:"/": ), [Int,Result]), ) €
Cn = integer O
theoryRep (Cn, Self,Self’) U
theoryRep (Cn, Int,Int’) O
iDivideby (Self’,Int’,Result)

10.7.19.2.19 (op) integer: ‘*’

RCL Head: integer: Self has ‘~':(Int:integer,Result:integer)
Mapping: {#integer..instance} x {#integer..instance} - {#integer..instance}
Variables Self - Int X Result

has( , ,Self,#(-Cn:’~": ), [Int,Result]), ) €
Cn = integer O
theoryRep (Cn, Self,Self’) O
theoryRep (Cn, Int,Int’) O
iExp (Self’,Int’,Result)

10.7.19.2.20 (op) real: ‘+’

RCL Head: real: Self has ‘+’:(Real:real,Result:real)
Mapping: {#real..instance} x {#real..instance} > {#real..instance}
Variables Self = Real X Result

has( , ,Self,#(-Cn: ‘+’: ), [Real,Result]), ) €
Cn = real O
theoryRep (Cn, Self,Self’) O
theoryRep (Cn,Real,Real’) O
rPlus (Self’,Real’,Result)

10.7.19.2.21 (op) real: ‘-’

RCL Head: real: Self has ‘-’:(Real:real,Result:real)
Mapping: {#real..instance} x {#real..instance} - {#real..instance}
Variables Self = Real X Result
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ﬁas(ﬁ,i,Self,#(—Cn: ‘- : ), [Real,Result]), ) €
Cn = real [
theoryRep (Cn, Self,Self’) O
theoryRep (Cn,Real,Real’) O
rMinus (Self’,Real’,Result)

10.7.19.2.22 (op) real: ‘*’

RCL Head: real: Self has ‘*’:(Real:real,Result:real)
Mapping: {#real..instance} x {#real..instance} > {#real..instance}
Variables Self = Real X Result

has( , ,Self,#(-Cn:’*’: ), [Real,Result]), ) €
Cn = real O
theoryRep (Cn, Self,Self’) O
theoryRep (Cn,Real,Real’) O
rTimes (Self’,Real’,Result)

10.7.19.2.23 (op) real: '/’

RCL Head: real: Self has ‘/’:(Real:real,Result:real)
Mapping: {#real..instance} x {#real..instance} - {#real..instance}
Variables Self = Real X Result

ﬁas(ﬁ,i,Self,#(—Cn:’/’:7),[Real,Result]),i) <
Cn = real [
theoryRep (Cn, Self,Self’) O
theoryRep (Cn,Real,Real’) O
rDivideby (Self’ ,Real’ ,Result)

10.7.19.2.24 (op) real: ‘'

RCL Head: real: Self has ‘~’:(Real:real,Result:real)
Mapping: {#real..instance} x {#real..instance} > {#real..instance}
Variables Self = Real X Result

has( , ,Self,#(-Cn:’"~’: ), [Real,Result]), ) €
Cn = real O
theoryRep (Cn, Self,Self’) O
theoryRep (Cn,Real,Real’) O
rExp (Self’ ,Real’ ,Result)

10.7.19.3 Derivations for metamodel classes
10.7.19.3.1 (op) object: exception

ﬁas(#object:l, Si, I,Exception, [R,X], So) €«
Exception = #(-object:exception: [+object,+object]) O
exception (R, X)

10.7.19.3.2 (op) object: remember

ﬁas(#object:I,Si,I,Remember, (P:V), So) <«
Remember = # (-object:remember:
pair (+#characteristic, #object) )l
So = remember (I,P,V,Si)
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10.7.19.3.3 (op) object: forget

ﬁas(#object:I,Si,I,Forget, (P:V), So) €«

Forget = # (-object:forget: pair (+#characteristic, #object))l
So = forget(I,P,V,Si)

10.7.19.3.4 (op) object: recall

ﬁaS(#object:I,S,I,Recall, (P:V), S) €

Recall = #(-object:recall: pair (+#characteristic, #fobject) )l
fact(s,I,P,V)

10.7.19.3.5 (op) parametricVClass: instance

ﬁas(#parametricvclass:I,S,I,Instance, #Cn’ :value (type, Type’ ,Value),
S) €

Instance = #(-parametricVClass:instance: I),

fact (S, I, # (parametricVClass:nameCn:identifier),NameCn),

fact (S, I, # (parametricVClass:type:list(class)), Type),

build (Type, Type’),

Cn’ = NameCn:Type’,

build([], [])
build([T|Ts], [T’ |Ts’]) € build(Ts,Ts’)

10.7.19.3.6 (op) value: recall

has(#value:I,S,I,Recall, (P:V), S) €
I = #Cn:value (P’ ,V’,Value) O
Recall = #(-value:recall: pair (+#characteristic, fobject))l
fact (value (P’ ,V’,Value), P, V)

ﬁas(#value:I,S,I,Recall, (#(Cn:Cn:#Cn):I), S) <«

Recall = #(-value:recall: pair (+#characteristic, #object)) O
~(I = #Cn:value(P’,V’,Value)) O
I &1 #Cn

10.7.19.3.7 (op) value: lowClass

ﬁas(#value:I,S,I,LowClass, #Cn, S) €
I = #Cn:value (P’ ,V’,Value) U
LowClass = #(-value:lowClass: #vClass)

10.7.19.3.8 (op) value: type

ﬁas(#value:I,S,I,P, Type, S) €
I = #(Cn:Type) :value (P’ ,V’,Value) O
P = #(-value:type: list(class))

10.7.19.3.9 (op) vClass: instance

ﬁas(#vclass:I,S,I,Instance, I:value(P,V,Value), S) €
Instance = #(-vClass:instance: I)
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10.7.20 Visibility

A private responsibility is visible only to an instance of the class within a responsibility of the class. A pro-
tected responsibility is visible only to an instance of the class within a responsibility of the class or a sub-
class of the class.

To determinefor which classesCn: PnT isvisiblefor amessagel has Pn: V requires knowing the sender
class and instance. For a message issued within a responsibility with the head Cn:  Sel f has PV, the
sender is#Cn: Sel f. Let Cs: | s bethe sender. Then for amessage | has PnV bound to aresponsibil-
ity R, Risvisibleif one of three conditions are satisfied.

a) Theproperty ispublic.
visible(Cs:Is,S,I,R) €
fact (S,R, # (responsibility:visibility:object),public)

b)  The property is private and
the sender classisthe same, Cs = #Cn, and the sender instanceisthesame, |s = 1.
visible (#Cn:I,S,I,R) €
fact (S,R, # (responsibility:visibility:object),private)
(R = #(Cn:PnT) OR = #(-Cn:PnT))
The sender classisthe same, Cs = #Cn, and the sender instanceistheclass, | s = #Cn.
visible (#Cn:#Cn,S,I,R) €
fact (S,R, # (responsibility:visibility:object),private)
(R = #(Cn:PnT) OR = #(-Cn:PnT))
The sender classisthe metaclass of the class, #Cn €41 Cs, and the sender instance isthe class or a
subclass of theclass, | s i sa* #Cn.
visible(Cs:Is,S,I,R) €
fact (S,R, # (responsibility:visibility:object),private)l
(R = #(Cn:PnT) OR = #(-Cn:PnT)) O
#Cn €41 Cs
Is isa* #Cn

c) Theproperty is protected and
the sender instanceisthesame, Is = 1.
visible(Cs:I,S,I,R) €
fact (S,R, # (responsibility:visibility:object), protected)
The sender classisthe same or asubclass, Cs i sa* #Cn.
visible(Cs:Is,S,I,R) €
fact (S,R, # (responsibility:visibility:object),protected)l
(R = #(Cn:PnT) OR = #(-Cn:PnT)) O
Cs isa* #Cn
The sender classis the metaclass of the class, #Cn €41 Cs.
visible(Cs:Is,S,I,R) €
fact (S,R, # (responsibility:visibility:object),protected)l
(R = #(Cn:PnT) OR = #(-Cn:PnT)) O
#Cn €51 Cs

10.7.21 Dynamic binding

Dynamic binding uses the inheritance search order to determine the realization R to be used for a message.
Properties not visible by the visibility rules are ignored as though they were not present.

256 Copyright © 1999 IEEE. Al rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg; (IDEFpjecr) Std 1320.2-1998

The axioms for binding ensure that R matches in name, level, property operator, and types; is reachable from
| ; isabove any floor set by asend t o super ;isnot lower than the responsibility Rfor adirect message;
and is the lowest such responsibility in the inheritance order. Constraints in the metamodel ensure that there
isat most one such responsibility. The vocabulary consists of the following:

Cs isthe sender class

I's is the sender instance

S isthe input state

I isthe nomina receiver

PnV isPn:V, Pn:=V, Pn:!=V, Pn:+=V, or Pn:-=V

RV isR V, whereR isaresponsibility

I Rs isthe set of reachable, matching responsibilities, including R, with their receiver, I’
I’ isthe actual receiver.

R is the selected responsibility

The axioms for dynamic binding are given in 10.7.21.1 through 10.7.21.7.
10.7.21.1 Bind
For the message | has PnV, bind finds

— Theresponsibility R,

— Theoverridden instance responsibility pairs| Rs,
— Theinstance |’ , and

— Thevalue V

sothatl ' hasR: V.

bind(Cs:Is,S,I,PnV,POn,IRs,I’,R,V,T) €
parsePnV (PnV,Pn,POn,V,QPnT) O ~(Pn = # ) O
IRs = {I’:[R’",I',LC,P1,L,#Cn,T] where
match(Cs:Is,S,I,QPnT,V,R’,Pn,T,L,P1) O
reach (S, I,LC,#Cn,I’) O
if floor(S,I,LCf,Plf,Lf,Cf)
then
lessThan (S, [LCf,P1f,Lf,Cf,object],
[LC,P1l,L, #Cn, object])
endif } O
if IRs = {} then exception(‘property not found ',QPnT) endif [
minimum(S,IRs, [R,I’,LC,Pl,L, #Cn,T])

parsePnV(Pn: V, Pn, get, V, Cn:Pn: T)
parsePnV (Pn V, Pn, set, V, Cn:Pn:= T)
parsePnV (Pn V, Pn, unset, V, Cn:Pn:!=T)
parsePnV(Pn +=V, Pn, add, V, Cn:Pn:+=T)
parsePnV (Pn:-=V, Pn, remove, V, Cn:Pn:-=T)

bind(Cs:Is,S,I,RV,POn,IRs,I,R,V,T) €

parseRV (RV, R,Pn,POn,T,V,QPnT,Cf) O
reach(s, I,LCf, Cf, I) O
fact (S,R, # (responsibility:plicity:object),P1lf) [0
fact (S, R, #(respon51blllty level:object),Lf) O
IRs = {I’':[R ,LC,P1l,L,#Cn,T] where

match(Cs Is,S,I,QPnT,V,R’,Pn,T,L,P1) O
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reach(S,I,LC,#Cn,I’) O
~lessThan (S, [LC,Pl,L,#Cn,object] , [LCf,Pl1f,Lf,Cf,object]) }

parseRV (# (Cn:Pn:T) : V, Pn, get, T, V, Cn’:Pn: T’, #Cn)
parseRV (# (Cn:Pn:=T) : V, Pn, set, T, V, Cn’:Pn:= T’, #Cn)
parseRV (# (Cn:Pn:!=T): V, Pn, unset, T, V, Cn’:Pn:!= T’, #Cn)
parseRV (#(Cn:Pn:+=T): V, Pn, add, T, V, Cn’:Pn:+= T’, #Cn)
parseRV (# (Cn:Pn:-=T): V, Pn, remove, T, V, Cn’:Pn:-=T’, #Cn)

10.7.21.2 Match
Match Rin name, level, property operator, and types.

R=#(Cn:PnT) for explicit responsibilities

R=# (-Cn:PnT) for implicit responsibilities

PnT = Pn PO T

R has class: #Cn

R has name: Pn

R has level: L

R has type: T

forall +Ti in T and corresponding Vi in V, Vi Iy Ti.

Match explicit responsibilities.

match(Cs:Is, S, I, Cn:PnT, V, R, Pn, L, explicit, T) &
R &g #responsibility 0O
R = #(Cn:PnT) U
visible(Cs:Is,S,I,R) O
fact (S,R, # (responsibility:isRealized:boolean),true,) U

(
fact (S,R, # (responsibility:name: object),Pn) O
fact (S,R, # (responsibility:level: object),L) O
fact (S,R, # (responsibility:plicity: object),explicit) O
fact (S,R, # (responsibility:type: object),T) U

accept (S,V,T)
Match implicit responsibilities on Pn and T, excluding add and r enove for collections.

match(Cs:Is, S, I, Cn:PnT, V, R, Pn, L, implicit, T) €
R &5 #responsibility [0
parsePnV (PnT,Pn,POn,T, ) O
R = #(-Cn:Pn:T) U
~( (POn = add O POn = remove)l
(T =T 0T = +7T") O
T’ isa* collection(T) 0O
visible(Cs:Is,S,I,R) O
fact (S,R, # (responsibility:level:object),L) O
fact (S,R, # (responsibility:plicity:object),implicit) O
accept (S,V,T)

Match implicit responsibilitieson Pn: Cn (T) , add and remove for collections.

match(Cs:Is, S, I, Cn:PnT, V, R, Pn, L, implicit, T) €
R &5 #responsibility [0
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parsePnV (PnT,Pn,POn,T, ) O
(POn = add O POn = remove)l
(R = #(-Cn:Pn:T’) OR = #(-Cn:Pn:+T’)) O

T’ isa* collection(T) O

visible(Cs:Is,S,I,R) O

fact (S,R, # (responsibility:level:object),L) O

fact (S,R, # (responsibility:plicity:object),implicit) U
accept(s,Vv,T)

10.7.21.3 Accept

Accept value VastypeT.
accept (S,V,T) € (T=+T’ O T=T’) OV I, T’
accept (S, [1,11)
accept (S, [VIVs], [TITs]) & accept(S,V,T) O accept(S,Vs,Ts)
10.7.21.4 Reach
Class C must be reachable from the nominal receiver along €,1 and isag relations. If an €51 relation is
taken to alowclass, the lowclass becomes the actual receiver (see Table 28).

Table 28—Reachability

Nominal receiver Reachableclassc Actual receiver

I I g1+ LC O Lc isag* C if I &1 LC then I
else LC

super (I:#Cn) I gg1+ LC U LC isag* C if T g51 LC then I
else LC

c’ (c’ = 1Lc OcC’ gl+ 1C) O LC isag* C LC

super (C’ : #Cn) (c’ = 1Lc OcC’ gl+ 1C) O LC isag* C LC

reach(S, I, LC, C, I) € ~(I & #class) O I &1 LC O LC isag* C

reach(s, I, LC, C, LC) € ~(I € #class) O I &1 C OC &l+ LC O LC isaz* C
reach(s, C¢’,LC, C, LC) €& (C’ & #class) O (c’ = Lc O cC’ gl+ LCc) O LC
isag* C

reach (S, super (X:#Cn), LC, C, X’) € reach(S, X, LC, C, X')
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10.7.21.5 Floor

Forasend t o super, the property bound must be above the property that issued thesend t o super.
The lowclass, LC, isthe one with which reach starts. The sender is aways explicit. The level isthe sender’s
level. The classis Cn, the class from whichthesend t o super wasissued (see Table 29).

Table 29—Floor

Receiver Floor lowclass, level, class
super (I:#Cn) I €51 LC, instance, #Cn
super (C’ : #Cn) C’, class, #Cn

floor (S, super (I:#Cn), LC, explicit, instance, #Cn) <
~(I € #class) O I &1 LC

floor (S, super(C’:#Cn), C’, explicit, class, #Cn) €& C’ & #class

10.7.21.6 lessthan

Theinheritance order is ascending on lowclass LC, plicity, level, class, and type, where

LC < LC’ if LC &l+ LC’
explicit < implicit

instance < class

C < C' if C isagt C’

T < T 1if T <: T' and not (T = T')

The same order determines which responsibilities are above the floor.

lessThan (S, [LC,Pl1,L,C,T], [LC’,Pl’,L’,C’,T’])é
-— R is less than R’..

LC &l+ LC" -- lower lowClass
00 LC=LC’ 0O -- or same super classes and
(Pl < P1" -- lower plicity
0Pl = Pl O-- or same plicity and
(L < L -- lower level
0L =1L" O-- or same level and
(C isagt C’ -- lower class
0 c=C’" O -- or same class and
T <: T' O~ (T=T'"))))--lower type

10.7.21.7 Minimum

For any responsibility R that matches, isreachable, and isabovethefloor, R = R or Rislessthan R

minimum(s, IRs, [R,I,LC,Pl1l,L,C,T])<€
I:[R,I,LC,P1,L,C,T,] O IRs O
O(r’,1’,LC’,P1",L",C",T") (
if I’:[R'I’',LC',P1’,L’,C’,T’] O Rs Onot ( R =R")
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then -— R is less than R’..
lessThan(s, [LC,P1l,L,C,T], [LC’,P1l’,L’,C’,T'])
endif)

10.7.22 Pre- and post-conditions

A property can have any number of pre-conditions or post-conditions. During the rewrite to definition
clausal form, separate clauses are produced for the property and the pre-conditions and post-conditions. The
pre-condition is a disjunction of the specified pr e Sent ences. The post-condition is a conjunction of the
specified post Sent ences.

preOk(Si, IRs, V, T) €
build(v,T,vi) O I:R O IRs, pre(R,Rpre) U ﬁasgﬁ:x, Si, I, Rpre,

Vi, Si)
pre( #(Cn:Pn:T), #(Cn:(-Pn):T) )
pre( #(Cn:Pn:=T), #(Cn:(-Pn):=T) )
pre( #(Cn:Pn:!=T), #(Cn:(-Pn):!=T) )
pre( #(Cn:Pn:+=T), #(Cn:(-Pn):+=T) )
pre( #(Cn:Pn:-=T), #(Cn:(-Pn):-=T) )

postOk (Si, IRs, V, So) €«

~(I,R,Rpost) (I:R O IRs 0 post(R,Rpost) U ~ﬁasy_:1, si, I,
Rpost, V, S))

post( #(Cn:Pn:T), #(Cn: (+Pn):T) )
post( #(Cn:Pn:=T), #(Cn: (+Pn) :=T) )
post( #(Cn:Pn:!=T), #(Cn: (+Pn):!=T) )
post( #(Cn:Pn:+=T), #(Cn: (+Pn) :+=T) )
post( #(Cn:Pn:-=T), #(Cn: (+Pn):-=T) )

10.7.23 Constraints

It is up to the modeler to construct the model, i.e., theory, so that for all public messages within the intended
interpretation, the message terminates, does not raise an exception, and produces the correct answer. Ulti-
mately, only the modeler knows the intended interpretation. In order to construct a theory for the intended
interpretation, the modeler must know the effect the constraints have on the theory. The purpose of formaliz-
ing the constraintsis to state their effect on the theory.

A constraint holds only for specific states and messages. Some constraints, such as a read-only constraint,
are expected to hold in all states. Other constraints, such as total, are not expected to hold in temporary,
intermediate states. A constraint in the graphics and RCL gives the constraint condition and indicates the
states and messages for which it must hold. Table 30 gives the intended meaning of the constraints.

Checking a named constraint that is not constant and has no effective pre-condition requires issuing a mes-
sage in the appropriate pre-conditions, post-conditions, or assertions. For example, the post-condition on the
outermost updating operation should check all constraints dependent on any property that may have been
updated.
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Table 30—Constraints and their meanings

Condition that must be

Constraint Quantification true Comment
All named constraints
Read-only responsibility All states, all argument | Input state equals output and uniqueness con-
values state. )
straints are read-only.
Thefacts about the argument
Nonupdateable argument cgjlusé:tt%, all argument are the same in the input —
state and the output state.

Constant responsibility

All states, all argument
values

Precondition, if any.
Cardinality constraint (total,
function, cardinality N).
Post-condition, if any.
Same output valuesfor given
input values.

Responsibility with an effec-
tive pre-condition

All states, all argument
values for which the
effective pre-condition
istrue

If the responsibility istrue,
then the effective post-con-
dition, if any, must be true.

Responsibility with an effec-

All states, all argument
values for which the

Responsibility.
Effective post-condition, if

A named constraint with
an effective recondition

tive pre-condition and total ift?ud;ve pre-condition any. is covered by this case.
No two instances agree on
Uniqueness constraint All states al propertiesin the unique- —

ness constraint.

Table 31 describes the constraints that are checked as part of the dynamic binding axiom for each message
sent.

Table 31—Constraints checked by dynamic binding axiom

Constraint on Property
responsibility operator Condition that must betrue Comment
Total and no effective pre- This case includes named
condition ALl Message must be true. constraints.
Effective pre-condition.
Responsibility with an effec- All If the responsibility istrue, then .
tive precondition the effective post-condition, if
any, must be true.
Responsibility with an effec- | Eff;fgr‘]’gg’iﬁ;o”d'“o”' B
tive precondition and total Effective post-condition, if any.
Function, i.e., single valued All At most one solution. —
Single-valued collection
property, collection con- Get II fecp?[irggeéct)irr:taissa;val ue, the col- —
strained to cardinality N
Multi-valued property, cardi- . .
nality N Get Exactly N solutions
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The constraints checked as a part of the dynamic binding axiom are entirely redundant if pre-conditions and
post-conditions are fully utilized.

10.7.23.1 CardinalityOk

The cardinality predicate raises an exception if a total, function, or cardinality N constraint is hot met (see
Table 32).

Table 32—Cardianlity constraints

Check
Plicity POn Check total function Check cardinality N Comment
Implicit | get Yes Yes If read-only Override the explicit to whom del-
egated (which is unconstrained).
Explicit | get Yes Yes If read-only —
Implicit | Other No No No Defer to the explicit to whom dele-
gated.
Explicit | Other Yes Yes No —

cardinalityOk(CI, S, I, POn, R, V, T) €
(R = #(Cn:PnT) OR = #(-Cn:PnT) O POn = get )0
cardinalitySolutions(CI, S, I, POn, R, V, T, Solutions, Cnt) O
if fact(S,R,# (responsibility:isTotal:boolean), true;)

then
if Cnt = 0 then exception(‘not total ‘,R) endif
endif [
if fact(S,R,# (responsibility:isFunction:boolean), truey)
then
if Cnt > 1 then exception(‘not function ‘,R) endif
endif [
if POn = get O
fact (S,R, # (responsibility:isReadOnly:boolean), true.) U
fact (S, R, # (responsibility:cardinalityN:integer), CardN)
then
if ~(O(T") (T isa* collection(T’)) O
~(Cnt = CardN)
O
(T isa* collection(T’)) O
Cnt =1 0O
Solutions = [Collection:So] U
fact (Collection, # (collection:1list:1list (object)),List) 0O
~count (List, CardN)
then
exception (‘not cardinality N’, R)
endif
endif

10.7.23.2 Cardinality solutions

cardinalitySolutions(CI,S, I, POn, R, V, T, Solutions, Cnt) <
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isList (Solutions) 0O
0o(v’,Sso)
(if build(v,T,v’) O issue(CI,S,I,POn,R,V’,S0)
then V’:So O Solutions
endif) O
0o(v’,So)
(if build(v,T,Vv’) O V’:S0o O Solutions
then issue(CI,S,I,POn,R,V’,S0))
endif) O
noDup (Solutions) O

count (Solutions, Cnt)

10.7.23.3 Build

Build up anew value for the arguments, keeping the input values and using new, existentially quantified vari-
ables for the output values.

build(V,+T,V) € ~isList(T)

build(v,T,V’) €& ~isList(T)

build ({1, [],[]1)

build([V|Vs], [+T|Ts], [VIVs’]) € build(Vs,Ts,Vs’)

build([V|Vs], [T|Ts], [V’ |Vs’]) € build(Vs,Ts,Vs’)

10.7.24 Exceptions

false € exception (R, X)

due to the closed world assumption. The result is that every model has an empty relation assigned to
exception.

10.8 Summary of the formal meaning of a view

The formal meaning of aview is defined as afirst order theory with the vocabulary specified above and the
following axioms.

a)
b)
<)
d)

e

264

The axioms for equality and the base theories.

The axioms for the modeling constructs.

The clauses resulting from the mapping of the RCL declarations and realizations for the metamodel.
The clauses resulting from the mapping of the RCL declarations and realizations for the view.

The completion of al the clauses.
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Comparison of IDEF1Xg3 and IDEF1Xg7 constructs

B.1 Migration from data models to object models

IDEF1Xg7 is anew modeling style, not simply an extension of IDEF1Xgs;. Clause 9 has shown how the full
identity-style language can be restricted to provide a key style compatible with earlier versions. While it is
intended that the new language be used by IDEF1X practitioners, it isrecognized that atransition period will
occur, with some modelers practicing solely in the old style, some practicing solely in the new, and others
experimenting with the new capabilities but not yet ready to adopt them completely.

Many of the features of the identity style can be used informally in conjunction with key-style models as a
way to learn how to use them. For example, adopting the notion of intrinsic instance identity, while retaining
the use of primary and foreign keys, allows the modeler to describe constraints precisely, as an alternative to
the imprecise notes used with the key style. In other words,, notes may be written in “informal” RCL as well
as natural language. Thinking of domains as value classes, or emulating them with entities, opens up addi-
tional possibilities for sharing and reuse of data.

A view isto be clearly of onetype, identity style or key style. This standard does not sanction blending of the
styles, or specify the meanings of constructs for “hybrid” models. Use of such models as |earning tools dur-
ing the period of transition to full identity style may, however, be helpful to some.

B.2 Comparison of modeling constructs

The fundamental semantic constructs of IDEF1X g3 FIPS PUB 184 [B13] are part of IDEF1Xg;. The earlier
concepts of IDEF1X have been incorporated into IDEF1Xg; by

d) Relaxing some of therestrictionsin IDEF1Xgs.
b)  Exploiting the fundamental concepts more fully.
c) Adding someimportant new concepts.

The identity-style version of IDEF1Xg7 described in Clauses 5 through 8 of this standard is the result of car-

rying out these steps. A summary of the correspondence of the IDEF1X g3 and identity-style IDEF1X 47 con-
structs and terminology is provided in Tables B.1 through B.3.
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Table B.1—Corresponding constructs

I DEF1X gz construct name

I dentity-style IDEF1Xg7
subsuming construct

Comments

alternate key

uniqueness constraint

Essentially the same concept.

attribute

attribute

Essentially the same concept. In
IDEF1Xgg, attributes typed to
domains rather than value classes.

category cluster

subclass cluster

Essentially the same concept. There
are subtle differencesin the treat-
ment of a“total cluster” asan
“abstract class”

domain

value class

A valueclassisaclassinitsown
right. Its representation is hidden,
alowing attributes typed to it to

have their representations hidden.

entity (dependent entity)

dependent state class

A dependent state classisonethat is
by its very natureintrinsically
related to certain other state

class(es).

entity (independent entity)

state class

Classes have both knowledge and
behavior properties. Classescan also
have class-level properties specified.

entity instance

instance (object)

An instance is amember of the like
things represented by the class.

generalization hierarchy

generalization taxonomy

Generalization alows for inherit-
ance of properties. Theidentity style
of IDEF1Xg7 includes multiple
inheritance.

glossary

glossary

Essentially the same concept.

model

model

Essentially the same concept.

note

note

Notes remain as a flexible way of
writing comments or informally
stating constraints.

relationship

relationship

Essentially the same concept. In
IDEF1Xg3, arelationship is
expressed in terms of foreign keys
where the foreign key identifies an
instance in a particular entity class.
In IDEF1X g7, relationships are spec-
ified in terms of identity and partici-
pant properties; the relationship
participant property identifies an
instance without regard to class.

view

view

Essentially the same concept.

view level

view level

Essentially the same concept.
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Table B.2—IDEF1Xg3 constructs new in IDEF1Xg7

I DEF1X gz construct name

I dentity-style IDEF1Xg7
subsuming construct

Comments

(no corresponding construct)

class-level property

In IDEF1X g3, entities did not have
attributes; only their instances did.
In identity-style IDEF1X g7 classes,
aswell asinstances, may have prop-
erties.

(no corresponding construct)

constraint/specification language
(RCL)

Many constraints could not be stated
directly in IDEF1Xg3 and were,
therefore, recorded as notes. RCL is
available to precisely state con-
straints in identity-style IDEF1Xg7.

(no corresponding construct)

environment

There was no corresponding concept
described in IDEF1Xg3.

(no corresponding construct)

instance identity

An instance in identity-style
IDEF1Xg7 possessesits own intrin-
sic identity, distinct from all other
instances. Primary keyswere used to
represent identity in IDEF1X g3, but
this identity was explicitly declared,
not intrinsic.

(no corresponding construct) operation There was no corresponding concept
described in IDEF1Xg3.
(no corresponding construct) participant property In IDEF1X g7, the value of a partici-

pant property isthe identity of the
related instance. IDEF1X g3 did not
support the notion of identity and
thus could not support this construct.

(no corresponding construct)

subject domain

There was no corresponding concept
described in IDEF1Xg3.

Table B.3—IDEF1Xg3 constructs not in IDEF1Xq7 (identity style)

I DEF1Xgg construct name

I dentity-style IDEF1Xg;
subsuming construct

Comments

struct)

foreign key (no directly corresponding con- Foreign keys are not used in the
struct) identity style of IDEF1Xg7.
primary key (no directly corresponding con- In IDEF1X g7 instances have intrin-

sic identity. The explicit uniqueness
constraint inherent in an IDEF1X g3
primary key can be stated with a
uniqueness constraint in identity-
style IDEF1Xg7.

Copyright © 1999 IEEE. All rights reserved.

269



IEEE
Std 1320.2-1998 IEEE STANDARD FOR CONCEPTUAL MODELING LANGUAGE

Annex C

(informative)

Examples

C.1 Pattern example: composite

This set of examples illustrates how IDEF1X can be mapped to design patterns or templates. A pattern, in
general, has been defined as something that “ describes a problem that occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such away that you can use this solu-
tion amillion times over...”® A desi gn pattern has been defined as a description of “communicating objects
and classes ... customized to solve a general design problem.” [B14]

Design patterns can be useful constructs for building reusable objects or for building new solutions that did
not have to start from scratch. Obviously, to accomplish this feat, one must find or create an appropriate
design pattern. When using a design pattern, it is important to think in abstract terms in order to determine
applicability. To this end, the next two examples use design patterns from [B14], as they would be repre-
sented in the IDEF1X language. A third example (in C.3) combines the first two patterns and applies that
aggregate pattern to represent the classes and properties of afamiliar business context.

Thefirst pattern is called the “composite” design patttern.96 It uses a tree structure representing a part-whole
hierarchy. In IDEF1X terms, Figure C.1 uses a cluster (here, atotal cluster) to depict the various subclasses
of graphic. The distinguishing aspect of this pattern is the use of recursion in the picture class. This
class represents a more complex class than the other subclasses in the cluster (1ine, rectangle, and
text, ).

The purpose of this pattern isto specify an abstract graphi c classthat is capable of treating simple graph-
ics (such aslines and text) with the same ease as a more complex picture, which may be composed of many
lines, shapes, text, and even other pictures. Conceptually, the depth of the part-whole hierarchy is unlimited.
Therefore, apicture could be made up of other pictures that, in turn, could include various shapes and
possibly more pictures.

9Christopher Alexander, speaking of patterns in architecture, as quoted in Design Patterns [B14], p. 2.
965ee Design Patterns [B14], p. 163-173, for afull discussion of the “composite’ pattern.
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graphic

draw

add

remove
getChildren

T
text
draw

line rectangle picture

draw
add: graphic

draw draw

picture: Self has draw ifg.¢
forall (Self has graphic: G): (G has draw).

picture: Self has add: G ify.¢f -- add instance of graphic
Self has graphic:+= G. -- to a picture

Figure C.1—Compoaosite pattern example

C.2 Pattern example: state

The second pattern illustrated is called the “ state” design pattern.97 It allows an instance to appear to change
its class (subclass) when it needs to alter its behavior as the result of a state change. This was introduced in
the discussions of “changing specialization” in 5.4.1.11 and 7.36.%8

The [B14] discussion of this pattern uses a network (TCP) connection. In this example, an instance of a con-
nection (tcpConnection) can be in one of three states: established, listening, or closed. When the con-
nection instance receives a request to open, close, Or acknowledge, it needs to respond differently,
depending on its current state. The “state” pattern describes how an instance can appear to change its spe-
cialization (to have differing behaviors) without actually altering itsidentity.

The key ideain this pattern is the introduction of another, abstract class (here called tcpState) to repre-
sent the various states of the instance. This class declares an interface for each of the requests calling for spe-
cialization-dependent behavior; its subclasses then implement the behaviors.

An instance of original class (here, tcpConnection) isaways related to the one instance of the abstract
class that represents its current state. When an instance of tcpConnection receives a request for one of
the state-specific behaviors, it simply delegates the request to its current state instance, as shown in the RCL
in Figure C.2. Whenever the instance changes state, it does so by changing its relationship to the appropriate
state instance.

97See Design Patterns [B14], p. 305-313, for afull discussion of the “state” pattern.

% DEF1X di rectly supports respecialization. An alternative conceptual level solution would be simply to make the states subclasses of
tcpConnection and eliminate tcpState asaseparate class. However, at the implementation level, many programming languages
do not alow an instance to “ changeits class’ (respecialize) so a solution of this nature is needed. The pattern is also applicable in cases
where a programming language does not allow a class to have multiple clusters of subclasses.
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tcpConnection tcpState
open open
close D close
acknowledge acknowledge

O

! |

tcpEstablished  tcpListen tcpClosed
open open open
close close close
acknowledge acknowledge acknowledge

tcpConnection: Self has open ifg4.¢
Self has tcpState..open.

tcpConnection: Self has close ifg.¢
Self has tcpState..close.

tcpConnection: Self has acknowledge ify.¢
Self has tcpState..acknowledge.

Figure C.2—State pattern example

C.3 Business pattern example (combining two patterns)

This pattern combines the two patternsintroduced in C.1 and C.2. It applies that resulting aggregate pattern
to represent the classes and properties of a familiar business context, a bank account. In Figure C.3, the
“composite” pattern is used to represent the part-whole hierarchy of a portfolio and its component accounts
of various types (credit card account, checking account, savings account, and possibly other portfolios).
Each basic account can print its own individual statement, and (as shown in the RCL) the portfolio’s
printStatement resultsin acombined statement for its constituent accounts.

The creditCardAccount portion of the model illustrates the application of the “state” pattern. In this
example, acredit card account can be in one of three states: active, over itslimit, or closed. How an instance
responds to a request to charge, pay, Of close depends on its current state. For example, a request to
charge when the creditCardAccount is(related to) active will respond with the expected behav-
ior (and apply the charge to the account balance). However, if the credit card account is (related to) over-
Limit, therequest to charge will be denied (if that is the business rule).

272 Copyright © 1999 IEEE. Al rights reserved.



IEEE

SYNTAX AND SEMANTICS FOR IDEF1Xg; (IDEFpjecr) Std 1320.2-1998

account
printStatement
@
I
creditCardAccount checkingAccount savingsAccount portfolio
printStatement printStatement printStatement printStatement
charge
pay
close
ccAccountStatus
T charge
pay
close
active overLimit closed
charge charge charge
pay pay pay
close close close

portfolio: Self has printStatement ifg ¢
forall (Self has account: A): (A has printStatement).

creditCardAccount: Self has charge ify.¢
Self has ccAccountStatus. .charge.

Figure C.3—Business pattern example, combining composite and state patterns

C.4 Model view level examples

Figure C.4 illustrates how a set of complementary views can depict the major concepts of interest to an area
of a (hypothetical) business. In this way, the defined concepts presented in the views serve as a graphic rep-
resentation of the business's vocabulary. Because this diagram is intended as illustrative of the concepts,
only simple names for views and classes are shown.

Here a survey level view is shown for the subject domain, Sales Campaign. Responsibilities are displayed
for one of its contained subject domains, Promotion. Also illustrated are the initial integration-level views
for the four subject domains of a sales campaign. Each of these integration-level views depicts the classes
most significant to that subject domain.
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Product

— - —

product

I
| customer

—— i —

Geography

geographic
activity account Area

standard custom
Sales Geography Geography
Campaign product | | geography |
promotion i T
| account |
plan sales campaign _———
identify campaign demographics/psychographics
launch campaign Promotion —_————
track sales activity within a campaign I
. . sales product 1
monitor & control campaign results Camoai |_ S
award campaign prizes [ paign
|
| employee promotional
i T Offering
target
Market
Organization business
Party Y
1 | business |
_J). + | Party 1
| T |
householdH person company customer | | competitor
employee |.—| orgUnit E

Figure C.4—Example set of model view levels

C.5 Behavior patterns

This set of examplesillustrates how IDEFy;ec; can specify typical patterns of update behavior. This material
uses a set of classes and properties drawn from the case study for HiHo, a fictitious recruitment agency.
Knowledge of the full case study is not required for understanding of the patterns presented here since the
focusison typical patterns of behavior found in many application domains.

C.5.1 Coordinated change to attribute values

The first behavior pattern illustrates how the value of one attribute can be tied automatically to the changein
another attribute’s value. For example, HiHo specifies that when the placement consultant assigned to an
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applicant changes, that applicant’s review date must be set to “30 days from now.” The attribute properties
involved in this requirement are shown in Figure C.5.

HiHo's requirement statement: “When an applicant’ s placement consultant is changed, the review date must
be set to 30 days from today.”

applicant

placementConsultantName: name (0)
reviewDate: date

Figure C.5—Applicant’s attributes

The placement consultant alone can be changed by making the simple request:
APP has placementConsultantName:= NewName
where

APP isthe applicant in question, and
NewName isthe name of the newly assigned placement consultant.

However, to enforce the requirement that the date be reset every time the placement consultant changes, the
default “set value” for placementConsultantName needsto be overridden, with two alternative forms
of the realization shown graphically in Figure C.6. Figure C.7 depicts the value class used in both forms of
the realization.

applicant: Self has placementConsultantName:= NewName 1ifg4.¢
Self has placementConsultantName: CurrentName,

if NewName == CurrentName

then
false

else
#date has today: TD, -- request to the date value class
TD has add: [ 30, ND ], -- calculate today+30
Self has reviewDate:= ND, -- set to calculated value
Self super has placementConsultantName:= NewName

endif.

Alternative:

applicant: Self has placementConsultantName:= NewName 1if4.¢
not Self has placementConsultantName: NewName,
#date has today: TD,
TD has add: [ 30, ND ],
Self has reviewDate:= ND,
Self super has placementConsultantName:= NewName

Figure C.6—Realization of override to placementConsultantName assignment

In this case, the realization checks that a change to the value of the placement consultant is being made since
there are side effects (here, resetting the review date). If a nonchange is permitted to succeed (i.e., making a
“change” of the placement consultant to its current value), the review date would, in effect, be reset for no
apparent reason.
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date
(cl) today _
add: [ Days: integer, NewDate: date ]
A 4

Figure C.7—Value class properties used in assignPlacementConsultant operation

C.5.2 Create an instance with a set of related instances

This behavior pattern is used when the existence of one instance requires “at least one” related other
instance, e.g., when arelationship has a “positive” cardinaity constraint, as shown by the “P” annotation in

Figure C.8. Here an applicant who registers for job placement with HiHo is required to register at least one
qualifying applicant skill.

HiHo's requirement statement: “When an applicant registers with us, the applicant must provide a set of
their quaifications, i.e., the skill areas for which the applicant wishesto be presented for employment.”

applicant

applicantld (i, ucl)

name: name

address: address

reviewDate: date

(cl) registerApplicant: [ Nm: name, Addr: address, RvDt: date, Skills: (list (pair (area,integer) ) ) ]
'l (cl) nextld

skillArea

applicantSkill P s (qualification) i

skillLevel: integer

(p) applicant (i, ucl)
(p) skill Area (i, ucl)

(cl) registerApplicantSkill : [ App: applicant, SA: skillArea, SLvl: integer ]

Figure C.8—Value class properties used in registerApplicant operation

The applicant class has a class-level property registerApplicant that accepts the user’s input values,
requests and assigns an internally generated identifier (via another class-level property, next1d), and cre-
ates a new instance of applicant using the built-in create operation. The realization of registerAp-
plicant is given in FigureC.9. This operation, in turn, invokes the classlevel operation

registerApplicantSkill inapplicantSkill, shown in Figure C.10. This step will invoke the
:+=overidein skillArea (see C.5.4).
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applicant: Self has registerApplicant:
[ Nm: name
, Addr: address
, RvDt: date
, Skills: list ( pair ( skillArea, integer ) )
] ifdef
Self has nextId: Id,
Self has create:
[ applicantId: Id
name: Nm
address: Addr
reviewDate: RvDt
instance: App

14
11 (Skills has member: SkillPair):
SkillPair has left: SA,
SkillPair has right: SLvl,
fapplicantSkill has registerApplicantSkill:
[ App: applicant, SA: skillArea, SLvl: integer ]

14
4
14
14
]
fora
(

) .

Figure C.9—Realization of registerApplicant operation

applicantSkill: Self has registerApplicantSkill:
[ App: applicant
, SA: skillArea
, SLvl: integer
] ifger
Self has create:
[ applicant: App
skillArea:SA
skillLevel: SLvl

4
4
i

-- anything else needed for registration

Figure C.10—Realization of registerApplicantSkill operation

C.5.3 Specify a value class as an enumerated value list

This behavior pattern is used to specify the valid list of valuesfor avalue class. In the case of HiHo, when an
applicant is made a job offer and the offer is refused, the applicant must provide one of HiHo's prescribed
refusal reasons.

HiHo's requirement statement: “ The only reasons we record for an applicant’s refusal of ajob offer are: sal-
ary, job duties, hours, benefits package, commute, other.”

When an interview has been completed, it has one of three outcomes: the applicant is rejected by the
employer, the employer makes an offer and the applicant accepts, or the employer makes an offer and the
applicant refuses the offer. In the last case, one of the valid reasons must be recorded. The redlization of the
value class ensures that only one of the reasons that HiHo has specified may be recorded as arefusal reason.
Any reguest that attempts to provide another value will fail. The value class graphic for refusalReason
and itsuse in aproperty of the interview state classis shown in Figure C.11, and the val ue class property
realizations are given in Figure C.12.
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interview refusalReason
/(cl) validReason(s): list (string )
N code: integer (ucl)
name: string (uc2)

(a) refusalReason: refusalReason (0)

-

Figure C.11—refusalReason value class

\

refusalReason: Self has ucl: Code ifg.¢
not Code < 1,
not Code > 6,
Self has wvalidReason(s): VRs,
VRs has at: [Code, Name]
Self has code: Code,
Self has name: Name.

refusalReason: Self has uc2: Name ifg.¢

Self has validReason(s): VRs,
VRs has at: [Code, Name],
Self has code: Code,

Self has name: Name.

refusalReason: Self has validReason(s): Vs ifg.¢
Vs 1is

[ “salary”

,  “job duties”

, “hours”

, “benefits package”
, “commute”

, “other”

]

Figure C.12—Realization of valid “refusal reasons”

C.5.4 Pendent deletion

This behavior pattern is used to specify a deletion constraint that permits the deletion of an instance that has
no dependents while placing a special constraint on the deletion of an instance that does have dependents. In
this case, when the instance to be del eted has dependents, that instance is not deleted immediately but rather
placed in a state that prohibits the establishment of any further dependent relationships; when the last depen-
dent is gone, the instance is deleted.

HiHOo's requirement statement: “We may decide to discontinue (delete) one of our skill areas, but only if itis
not actively being used, i.e., associated with any applicant skills. If a skill areathat we wish to discontinue
does have active applicant skills registered, we will continue to support that skill area until it is no longer
used, but we do want to discontinue allowing new applicant skills to be accepted against the skill area.”

Figure C.13 shows a graphic supporting this HiHo reguirement. Figure C.14 provides the realizations. The
built-in operation establishing new relationship instances between skill area and applicant skill must be over-
ridden to check the value of a skillArea’smyState property and fail if its value indicates a value that
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prohibits new relationships. Finally, to make this solution bullet-proof, the deletion of skillArea isover-
ridden to prohibit the direct deletion of a skill areawhileit still has related applicant skills.

skillArea

(op) discontinueSkillArea
(p) applicantSkill

(cl, op) cleanup

| | myState

applicantSkill
(p) skillArea

Figure C.13—Skill area and its dependent

skillArea: Self has discontinueSkillArea if.¢

if

not Self has applicantSkill: Any -- if no participants
then

Self has delete —-— delete the Skill Area
else

Self has myState:= ‘discontinued’ -- ‘discontinued’ state
endif.

skillArea: Self has cleanup ifg.¢
forall (skillArea has instance: SA):

( if
not SA has applicantSkill: Any,
SA has myState: ‘discontinued’
then
SA has delete
endif
) .
skillArea: Self has applicantSkill:+= AS if4.s —- override the builtin
if
Self has myState: ‘discontinued’
then
false
else
Self super has applicantSkill:= AS
endif.

skillArea: Self has delete ifg4.¢ -- override the builtin

not Self has applicantSkill: Any,
Self super has delete.

Figure C.14—Realization of pendent deletion operations for skillArea
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C.5.5 Generalized change request

This behavior pattern is used to specify an operation that can respond to a request that may supply (option-
ally) one or more attribute values, i.e., it illustrates how to handle an input argument list in which one or
more arguments may have no value.

HiHo's requirement statement: “Applicants may contact us and ask us to update one or more of the details
we have recorded in their files, e.g., their names and/or their addresses and/or their phone numbers.”

Anapplicant’'s correctApplicantDetails operation may find anew name and/or a new address and/
or anew phone number when arequest ismade, i.e., any or al of the input argument values may be supplied
with arequest. Figure C.15 shows the graphic for applicant, and Figure C.16 provides the realization of
the correctApplicantDetails operation.

applicant

name: name
address: address
phone: integer (0)

correctApplicantDetails: [ Nm: name, Adr: address, Phn: integer ]

Figure C.15—Applicant’s generalized change operation

applicant: Self has correctApplicantDetails:
[ Nm: name, Adr: address, Phn: integer ] ifg.¢
if Self has name: Nm
then
true
else
Self has name:= Nm
endif,
if not Self has address: Adr
then Self has address:= Adr
endif,
if Self has phone: Phn
then
true
else
Self has phone:= Phn
endif.

Figure C.16—Realization of applicant’s correctApplicantDetails operation

This handles al variations of request argument values and current instance values. For example, if Nm has a
value when the request is made and that value is hot the value currently assigned to name, then Self has
name: Nmisfalse; and the new valueisassigned to name (following the e1se leg). If, on the other hand,
Nm has no value when the request is made, Nm is treated as an output argument, its value is set to the current
value of name, and Self has name: Nm istrue (having no effect). Finaly, if phone (an optional
attribute) has no value and there is no value of Phn supplied at the time of the request, the comparison is
false and phone is(re)set to “no value” The test and change to address illustrates an alternative form of
the i f/then/else syntax, using the conjunction.
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C.6 Value class examples

C.6.1The sunset query

IDEF1X model constructs and query language provide a clean mapping to various “extended relational”
implementation languages. This material presents the solution to Stonebraker’s “sunset query” problem
[B25] as an IDEF1X model, with the query expressed in RCL. It then illustrates how the model specification
could be trandated into the syntax of one object-relational DBMS.

The query problem, as described by Stonebraker,%® comes from the State of California Department of Water
Resources (DWR). As a part of its documentation library, DWR maintains a sizable collection of 35-mm
dides. Each slide has an identifier, the date it was taken, a caption, and the digitized image in Kodak Photo-
CD format. The collection is accessed daily by DWR employees and clients, often on a“query by content”
basis, for example, “1 am looking for a sunset picture taken within 20 miles of Sacramento.” This kind of
guery cannot be readily satisfied by a search of the file of textual captions that have been associated with the
dides. DWR is developing a system that will allow their images to be classified and searched electronically
as complex data.

C.6.1.1 The sunset query in IDEF1X

Figure C.17 shows an IDEF1X representation of their design. The realization of the two operations used in
the query problem isgivenin Figure C.18.

text
slide contains: string
id: integer >_
date: date 4
caption: text . photo_CD_image color
picture: photo_CD_image Vs
isSunset > top: photo_CD_image isOrange
color: color

J/ \ /

landmark point (1)
(x: real
name: string > y: real
location: point distanceTo: [ point, real ] Notes
7 (1) x, y are in units of 'miles'

Figure C.17—State and value classes for the “sunset problem”

The query to “find a sunset within 20 miles of Sacramento” is shown in Figure C.19. It involves the follow-
ing components:

a) Find the geographic 1ocation of “Sacramento” inthe landmark table.
b)  Find other landmarks that have alocation within 20 miles of the Sacramento location.

994 discussion of this problem is presented in Object-Relational DBMSs [B25] on pp. 13-17.
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slide: Self has isSunset if.¢
Self has picture..top..color..isOrange.

point: Self has distanceTo: [ Point, D ] ifg.r
D is (( Self..x - Point..x )”*2 + ( Self..y - Point..y )"2)"0.5.

0)
d)

Figure C.18—Realizations used in isSunset operation

contains determines whether aword (passed as an argument) appearsin the caption text.

isSunset examines the bitsin an image to determine if the image has the color orange at its top.
Figure C.19 presents the RCL in a form that parallels the structure of an SQL query. Figure C.20
provides a variation on the same query.

Slides is [ P where ( -— SQL “Select”

slides has instance: P, -— SQL “from”
landmark has instance: S,
landmark has instance: L,

S..name == ‘Sacramento’, -—- SQL “where”
L..location has distanceTo: [ S..location, D ],

D =< 20,

Lname is L..name,

P has caption..contains: Lname,

P has picture..isSunset

1.

Figure C.19—RCL query to “find a sunset picture within 20 miles of Sacramento”

Slides is [ P where (

S is landmark with name: ‘Sacramento’,

L is #landmark..instance,

L..location has distanceTo: [ S..location, D ],

D =< 20,

Lname is L..name,

P is slide with (caption..contains: Lname, picture..isSunset)

1.

Figure C.20—Alternative RCL for sunset query

C.7The Table and Chair Company (TcCo)

The Table and Chair Company, TcCo, provides an example of an identity-style model in the form of a view
diagram and exampl e instance tables and definitions. TcCo buys parts from vendors and assembles them into
tables and chairs. Concepts such as part, vendor, quantity-on-hand, and so on are of concern to TcCo. This
UOD has an existence and reality in TcCo independent of any model of it. That UOD is described in Figure
C.21 using a view diagram, a depiction of the value classes, a set of sample instance tables, and glossary
entries for some of the defined concepts, concept pairs, and relationship descriptions. The example is not
intended to be complete; it issimply illustrative.

282

Copyright © 1999 |IEEE. All rights reserved.



IEEE
SYNTAX AND SEMANTICS FOR IDEF1Xg; (IDEFpjecr) Std 1320.2-1998

C.7.1TcCo production view diagram

Figure C.21 is a view named production that reflects the state classes, attributes, and relationships of
concern to TcCo. Other views of TcCo could be drawn, sharing some of the same concepts but emphasizing
other concerns. For example, amarketing view might include part with a different set of attributes,
omit the vendor state class, and add a state classfor customer.

production

part

partName (i, ucl ) vendor

qtyOnHand: quantity vendorNbr (i, ucl)
partType ® ( backupVendorL vendorName
backupPrice: price (0 ) is backup vendor for

(co) backup

( component ) | ( standardVendor )
| I is standard
vendor for
. madePart
goes into
standardCost: cost
(‘assembly )
is made of boughtPart [ )
® p standardPrice: price

structureltem (p) standardVendor ( ucl )

(p) assembly (i, ucl) vendorPartld (o, ucl)

(p) component (i,ucl) reorderPoint: quantity (o)
qtyEach: quantity reorderQty: quantity (o)

Figure C.21—The Production view of The Table and Chair Company

The state classes labeled part inthe production and marketing views are distinct state classes. It is
the state classin aview (view state class) that specifies the state class. For that reason, the terms view state
class and state class will be used interchangeably. Relationships exist between state classesin the context of
aview. In Figure C.21, production part isrelaedtoproduction vendor. 100

It isaview state class that has properties. In Figure C.21, the view state classproduction part hassix
properties—four of these are attributes (partName, gtyOnHand, partType, and backupPrice).
This means that each instance of production part potentially hasapartName value, agtyOnHand
value, and so on for each of its attributes. Because partName isdeclared intrinsic, it is constrained to have
asingle, unchanging value for every instance of part; because it is has a uniqueness constraint, these val-
ues are required to be distinct. The value of the partName attribute of production part isaninstance

100The state class production part isdenoted formally by production: part. Thatis, the function application produc-
tion: part denotes (evaluatesto) the state class.
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of the partName value class that is a speciadization (subclass) of the name value class. The value of the
gtyOnHand attribute of production part isaninstance of the quantity value class.

An attribute may be named by the value class (asin partName) or may haveitsown role name (asin gty-
OnHand). Saying that aview state class has an attribute X (or has arole named attribute Y with atype of x)
isjust away of saying that the view state classisrelated to (maps to) the value class X.

The participant properties reflect the relationships between the view state classes. Each relationship results
in two participant properties, onein each of the state classes participating in the relationship. In Figure C.21,
the state class production part hastwo participant properties (backupvVendor and structure-
Item), although they are not explicitly shown on the diagram. The participant property backupvVendor
reflects the relationship between production part and production vendor. The property carries
therole name, backupVendor, which has been given to vendor’s participation in the relationship. If dis-
played, it would be marked optional corresponding to the specification stated by the relationship. The
participant property structureItem corresponds to the relationship between production part and
production structureltem. Thisproperty carriesthe name of the related state class, structure-
Item, since no role name has been given to structureItem’s participation in the relationship. If dis-
played, it would be marked optional and multiple (multi-valued), corresponding to the specification
stated by the relationship.

Participant properties are normally displayed inside the class rectangle only if necessary to state a constraint,
like uniqueness, that could not otherwise be stated. For this reason, in structureItem the two partici-
pant properties are shown.

C.7.2TcCo value classes

The value classes for TcCo are illustrated in Figure C.22. Note that in a completed model the inclusion of
each value class would need to be justified on the basis of having useful responsibilities. Further analysis
would screen out those with no useful responsibilities and identify the useful responsibilities of surviving
value classes.

Figure C.22 shows value classes, such asvendorPartId and quantity, showsrepresentation datatypes
suchascharacter and number (where specified), and shows generalization hierarchies, suchasprice
and cost, which are each specializations of money.

C.7.3TcCo sample instance tables

The UOD for TcCo includes instances of parts and vendors, attribute values for the instances, and relation-
ships between the instances. These are shown in Figure C.23 as sample instance tables.

The #K at the left of the tablesin Figure C.23 represent the oid of a*thing” that, in the TcCo UOD, is classi-
fied as being a member of the state class corresponding to the table. In this case, the individual identified as
#1 isclassified asbothaproduction part andaproduction madePart.

An individual considered as an instance of a view state classis caled a view state class instance (simply,
instance). The instance tables in Figure C.23 show view state class instances, such asproduction part
#1 and production madePart #1.

The values of the attributes of a view state class instance are aligned in rows and columns, one row for each
view state class instance and one column for each attribute. The rows in these examples are shown in the
sequence of the objects' oids. However, there is no requirement to sequence the rows or any implied mean-
ing in the sequence.
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vendorPartld partType vendorNbr name
( j (I rep: characterj ( rep: characterj ﬁ rep: Characterj
~ = - ——

mone
ﬁ partName vendorName
H

uantit
prlce cost 1 4
( ) l | rep: number l
N—e

\—/_/

Figure C.22—TcCo value classes

The value of an attribute is an instance of a value class, so each cell in fact specifies a value class instance,
such asvendorPartId 57, denoted formaly as vendorPartId: 57. Thevaue shown, suchas 57,
is the representation portion; the value class name is given by the column heading. In this case the column
heading is both the name of the attribute and the name of the value class.

The special symbol “—-" indicatesthat aview state classinstance has no value for a property. Note that “—" is
not avalue; “—-" is not an instance of any value class.

C.7.4TcCo sample relationship instances

One form of presenting the sample instances of relationships for the TcCo production view isshown in
Figure C.24. This style of displaying relationship instances uses one table for each relationship, with each
table named for the participating state classes and using the role names (if any). Each instance table has two
columns, each named for the participating state classes. Each row of atable is an ordered pair consisting of
the identities of the participating instances. For example, the “standardVendor boughtPart” table indicates
that production boughtPart #4 hasstandardvendor #201.

An aternative method of presenting relationship instances is as a sample instance diagram of state classes.
The same relationships shown in Figure C.24 for standardvVendor/boughtPart are depicted in Fig-
ure C.25,10

Both forms of presentation demonstrate that “ one vendor may be the standard vendor for many bought
parts’ by showing vendor #301 asthe standard vendor for boughtPart #6 andboughtPart #7.

C.7.5TcCo sample definitions

Table C.1 provides examples of definitions for TcCo. Both “ Single Concepts’ and “Concept Pairs’ are pro-
vided (see the formalization metamodel for the structure of this section of the glossary).

101Tps || ustration omits the display of the other properties of TcCo's vendor and boughtPart state classes.
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part
partName gtyOnHand partType backupPrice
#1 table 2000 m -
#2 top 17 m 800
#3 leg m 10
#4 shaft b
#5 foot b
#6 screw 100 b
#7 plank 0 b -
#8 seat 2 m -
madePart vendor
standardCost vendorNbr vendorName
300 #101 10 Acme
5 #201 17 Babcock
100 #301 30 Cockburn
50 #401 40 Dow
#501 50 Eisenhower
#601 60 Fum
boughtPart
standardPrice vendorPartld | reorderPoint reorderQty
#4 6 57 10 15
#5 3 - -- 7
#6 1 10ab-33 30 40
#7 4 - - -
structureltem
gtyEach
#17 4
#27 1
#37 4
#47 4
#57 1
#67 1
#17 1
#97 1

Figure C.23—Sample instances of TcCo
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vendor: #201

boughtPart(s): [ #4 ]

vendor: #101

boughtPart(s): [ #5 ]

vendor: #301

boughtPart(s): [ #6, #7 ]

boughtPart: #4

IEEE
Std 1320.2-1998

standardVendor

1 #201

boughtPart: #5

standardVendor

1 #101

boughtPart: #6

standardVendor

: #301

boughtPart: #7

standardVendor

. #301 '|

Figure C.24—Alternative presentation of TcCo relationship instances

standardvVendor boughtPart backupVendor part
vendor boughtPart vendor part
#201 #4 #201 #2
#101 #5 #101 #3
#301 #6 #101 #4
#301 #7 #401 #5
#401 #6
component structureltem assembly structureltem
part structureltem madePart structureltem
#2 #27 #1 #17
#3 #37 #1 #27
#4 #57 #1 #37
#5 #67 #3 #47
#6 #47 #3 #57
#6 #17 #3 #67
#7 #17 #2 #17
#7 #97 #8 #97
Figure C.25—Sample relationship instances of TcCo
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Table C.1—Sample glossary entries for TcCo

oid Name Description
#sC1 part What TcCo makes or uses to make what it makes.
#sC2 vendor A party who sells partsto TcCo.
#sC3 quantity A count of the number of something.
#sC4 name A distinctive designation by which some thing is known.
#sC5 partName A name that may be given to a part.
#sC6 vendorName A name that may be given to avendor.
#sC7 backup TcCo policy states that there must be a backup vendor for any part that TcCo
does not make.
Concept pairs
oid p-props Name Description
#cP1 #sC1, #sC5 part + A name that may be given to a part.
partName In this case, the name given to this part.
#cP2 #sC1, #sC3 part + A count of the number of something.
gtyOnHand In this case, the quantity of this part that TcCo hasin stock.
#cP3 #sC1, #sC2 part + A party who sells parts to TcCo.
backupV endor In this case, the vendor who is “backup” for the “primary” vendor
of this part. Not all parts have such a backup vendor.
#cP4 #sC1, #sC7 part + TcCo palicy states that there must be a backup vendor for any part
backup that TcCo does not make.
#cP5 #sC2, #sC6 vendor + A name that may be given to avendor.
vendorName In this case, the name given to this vendor.
#cP6 #sC2, #sC1 vendor + What TcCo makes or uses to make what it makes.
part In this case, a part that may be provided to TcCo by this vendor in
emergency (“backup”) situations.
Relationship descriptions
oid p-props Name Description
#D1 #cP3, #cP6 part + TcCo policy states that there must be a backup vendor for any part
backupV endor that TcCo does not make. The backup relationship is used when-
+ ever the primary vendor of the part is unable to supply sufficient
vendor + quantities.
part
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Annex D

(informative)

Built-in classes

The built-in state and value classes are extensible. Properties can be added, subclasses can be added, and
properties can be overridden. Parametric value classes can be added. Subclasses can be added to the anony-
mous top view shown in Figure D.1, or in a named view.

The built-in classes shall include at least those shown here, with the properties shown. The realization RCL
determines the semantics of the properties. Any equivalent RCL that satisfies the semanticsis acceptable.

D.1 Built-in state classes

The built-in state classes are metamodel classes. They provide properties such asinstance creation, instance
deletion, and access to the instances of aclass. See 10.2 for the specification of the built-in state classes.

value
‘ 7
string "
((at) isEmpty (o,uc2,d) ) Shumera |9n - —
(at) first: character (o,uc1,d) (cl,at) valldNang identifier (sr
(at) rest: string (uc1,d) (at) name: identifier (uc1)
(co) isValid

(op) at:[integer,character] (o,mv)
(op) prefix:[character,string] ‘
(at) count: integer (d)

(at) string: string

(op) '+": [string (in), string]

identifier

(at) isEmpty (o,uc2,d)

(at) first: character (o,uc1,d)
boolean (at) rest: identifier (uc1,d)

i f: [stri int
(op) mder [_S ring, integer] (o,mv) Q (op) prefix:[character,identifier]
(0p) substring: number (at) count: integer (d)
At:int i t:int in),stri :
[Atinteger(in), Countinteger(in),string] (o |_] (at) identifier: identifier
\— / (at) asString: string (d)
0 e}
;Q;et?ZrSReal' real ) real ‘ craracter
(at integer: integer ((at) aslnteger: integer ) | (at) character:character (uc3)
(op) to: . (at) real: real (co) countlsOne
[High:integer,l:integer] (o,mv ,+, - [real, real ]
-':[real, real ]

'+': [ integer, integer ]
-': [integer, integer ]
"' [ integer, integer ]
'I': [ integer, integer ]
'"A': [ integer, integer ] =

" [real, real ]
‘" [real, real ]
"\ [ real, real ]

NS

Figure D.1—Built-in value classes
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value

pair(T1,T2)
(at) left:T1 (uct)
(at) right:T2 (uc1)

I
Nk

collection(T

| (at) first: T(o d)

(at) isEmpty (o)

(at) count: integer (d)

| (at) list: list(T)

(at) member: T (o,mv,d)

list(T) ‘

((at) asSet: set(T) (d)

(op) remove:[T(in), list(T)] (o)

(op) at:[integer,T] (mv,0)

(op) "+"[list(T), list(T)]

(at) duplicateFree: list(T) (d)

(at) sorted: list(T) (d)

(op) sortedBy:
[Pns:list(identifier), list(T)]

J

O
Tk

accumulator(T)
(at) initial: T(in) (d,uc1)
(at) previous: T
(at) current: T
(at) final: T (d,uc1)

-

\

set(T)

( (at) asList: list(T) (d)

(op) '+': [set(T)(in), set(T)]

(op) "™": [set(T)(in), set(T)]

(op) -: [set(T)(in), set(T)]

(op) groupedBy:
[list(identifier)(in), set(T)] (mv)

(op) isSubsetOf: set(T)(in) (o)

(op) intersectsWith: set(T)(in) (o)

bag(T) |

: ((at) asList: list(T) (d A
(a:) aSBa?'. btag(T) (d) (at) asBag: bag(T) (d) (at) asSet: seti ;((d))
(at) (:.OUT] - Integer (at) choice:T (0,d) (at) choice: T (0,d)
(at) first: T (0.d) (uc) (at) rest:set(T) (0,d) (at) restbag(T) (0,d)
(at) rest:l_ls.t(T)l (0,d) (uct) (op) insert:[T(in), set(T)] (op) ingert] g o). b’ag( T
(op) pre.fl_x.[T,hst(T)] (op) insertLast:[T(in), set(T)] (op) insertLast:[T(in),bag(T)]
Ezg)l?nssti:tgs)t'(ﬁza) list(T)] (at) istlisi(T) (d,uct) (at) list: list(T) (d,uc1)
(at) member: T ’ (op) remove:[T, set(T)] (o) (at) memberCounts:

set(pair(T,integer))) (d,uc3)
(op) remove:[T(in),bag(T)] (o)
(op) memberCount: [M:T,N:integer]
(op) '+': [bag(T)(in), bagt(T)]
(op) ™": [bag(T)(in), bag(T)]
(op) -": [bag(T)(in), bag(T)]

AN — 4 A J

Figure D.1—Built-in value classes (continued)

D.2 Built-in value classes

D.2.1 Interfaces

D.2.2 Realizations

(The properties shown in the graphics for which no realization is given are directly realized by axioms, as
described in Clause 10.)

D.2.2.1 Accumulator(T)

D.2.21.1(at) accunulator(T): current

The current value of the accumulator, or if no value yet exists, the previous value.

accumulator (T): Self has current: (V:T) ifgy.¢

V is (Self super)..current,

if V is Self..previous then true endif
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D.2.2.1.2(at) accunulator(T): final

The current value of the accumulator.

accumulator (T): Self has final:(V:T) ifg.¢
V is Self..current

D.2.2.1.3 (at) accunulator(T): initial

Theinitia value of the accumulator.

accumulator (T): Self has initial: (V:T) (in) ifges
V is Self..previous.

D.2.2.1.4(co) accunulator(T): ucl

Uniqueness constraint 1 for the accumulator. The initial and final values determine the values of the repre-
sentation properties, previous and current. The uniqueness constraint is responsible for determining T.

accumulator(T): Self has ucl:[Initial:T,Final:T] ifg.¢

Self has previous:Initial,
Self has current: Final,
Initial has lub:[Final,T].

D.2.2.1.5 Example

Using the model in Figure C.17, an accumulator can be used in a query to find the Landmark closest to a
given Point andits Distance to that point.

Variable Acc: accumulator (pair (landmark,real)),

L is landmark..instance, -- an arbitrary instance to
use as
D is L..location..distanceTo (Point), -- the initial closest

Acc 1s accumulator (initial(L:D), final (Landmark:Distance)),
for Acc all (Landmark is landmark..instance): (
Distance is Landmark..location..distanceTo (Point),
if Distance < Acc..previous..right
then
Acc..current is Landmark:Distance
endif)

D.2.2.1 Bag
D.2.2.2.1(at) bag(T): asList
Li st isthereceiver bag asalist.

bag (T) : Self has asList: (List:1list(T)) ifges
List is Self..list

D.2.2.2.2(at) bag(T): asSet

Set isthereceiver bag as a set.

bag (T): Self has asSet: (Set:set(T)) ifger
Set is set with list(Self..list)
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D.2.2.23(at) bag(T): choice

One of the members.

bag(T): Self has choice: (X:T) ifge¢
X is Self..list..first

D.2.2.2.4 (op) bag(T): insert

The bag with X added.

bag(T) : Self has insert:[X:T,Result:bag(T)] ifg4.¢
Result is bag with list(Self..list..prefix (X))

D.2.2.25 (op) bag(T): insertLast

The bag with X added.

bag(T): Self has insertlLast:[X:T,Result:bag(T)] ifge¢
Result is Self..insert (X)

D.2.2.2.6 (op) bag(T): intersectsWth

Trueif the receiver has at least one element in common with the argument.

bag(T) : Self has intersectsWith:[Bag:bag(T)] ifger

Self has member:X,
Bag has member:X

D.2.2.2.7 (op) bag(T): nenber Count

A count N for amember M

bag(T): Self has memberCount: [M:T,N:integer] ifg.¢

Self..asSet has member:M,

Acc is accumulator (initial:0,final:N),
for Acc all (Self has member:M) :
(acc..current is acc..previous + 1)

D.2.2.2.8 (at) bag(T): nenberCounts

A set of pairsM N giving the count N for amember M

bag (T) : Self has memberCounts: (MCs:set (pair(T,integer))) ifger
MCs is { M:N where Self has memberCount: [M,N] }

D.2.2.29 (op) bag(T): renove

The bag with X removed.

bag (T) : Self has remove: [X:T(in),Result:bag(T)] ifg.s
Result is bag with list(Self..list..remove (X))
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D.2.2.2.10(at) bag(T): rest

The rest of the members, all but the choice.

bag(T): Self has rest: (Xs:bag(T)) ifger
Xs 1s bag with list(Self..list..rest)

D.2.2.2.11 (at) bag(T): ucl

The uniqueness constraintison | i st .

bag (T): Self has ucl: (List:1ist(T)) ifger
Self..list is List..sorted

D.2.2.2.12(at) bag(T): uc3

The uniqueness constraint is on menber Count s.

bag (T): Self has uc3: (MCs:set(pair(T:integer))) ifges
List is [M where MCs has member: (M:N),I is O0..to(N-1)],
Self has ucl: List

D.2.2.2.13 (op) bag(T): *+

Resul t istheunion of Sel f and Bag.

bag(T): Self has ‘+’:[Bag:bag(T),Result:bag(T)] ifger
Result is bag (X where Self has member:X or Bag has member:X)

D.2.2.2.14 (op) bag(T): **’

Resul t istheintersection of Sel f and Bag.

bag(T): Self has ‘*’:[Bag:bag(T),Result:bag(T)] ifdef
Set is (Self + Bag)..asSet,
MCs is {M:N where
M is Set..member,
if Self..memberCount (M)< Bag..memberCount (M)

then

N is Self..memberCount (M)
else

N is Bag..memberCount (M)
endif},

Result is bag with memberCounts: MCs
D.2.2.2.15(op) bag(T): ‘-’

Resul t isthe bag difference, Sel f minus Bag.

bag(T): Self has ‘-’:[Bag:bag(T),Result:bag(T)] ifger
Set is (Self + Bag)..asSet,
MCs is {M:N where
M is Set..member,
N is Self..memberCount (M) - Bag..memberCount (M),
N > 0},
Result is bag with memberCounts: MCs
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D.2.2.3 Character

Char act er isasubclassof i denti fi er, but does not have the same representation. | denti fi er is
represented by a composition of pr ef i xI denti fi er function applications. Char act er isrepresented
in any way so that char act er 'svalue satisfiesthei sChar act er predicate. The uniqueness constraints
on identifier is overridden to establish both representation values.

D.2.2.3.1 (co) character: countlsOne

The count must be one. This constraint is checked at the conclusion of any literal for a character. Use of the
inherited uniqueness constraint on i sEmpty will cause the constraint to fail.

character: Self has countIsOne ifg.¢
Self super has count: 1

D.2.2.3.2 (op) character: ucl

The uniquenessconstraintisonf i r st andr est overridesuclini dentifier.If Restisnot ‘', then
uc3 will befalse. Therefore, ucl will befalse, and the isTotal constraint will be violated. Such aviola-
tion will cause an exception to be raised.

character: Self has ucl: [First:character,Rest:identifier] ify.¢

Self super has ucl:[First,Rest],
Self has uc3: First

D.2.2.3.3(op) character: uc3

The uniqueness constraint ison char act er .

character: Self has uc3: (Char:character) ifg.¢

Self super has ucl:([Char,’'],
Self..character is Char

D.2.2.4 Collection
D.2.24.1(at) collection(T): count

The number of members of the collection.

collection(T): Self has count: (N:integer) ifg.¢
N is Self..list..count

D.2.2.42 (at) collection(T): first

The first member, if any.

collection(T): Self has first (X:T) ifges
X is Self..list..first

D.2.24.3 (at) collection(T): isEmty

Trueif the collection is empty.

collection(T): Self has isEmpty ifg.¢
Self..list..isEmpty
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D.2.2.4.4 (at) collection(T): menber

Resul t isamember of the collection.

collection(T): Self has member: (X:T) ifg.¢

X is Self..list..member
D.2.2.5 Enumeration

Theval i dNane class-level property isamulti-valued property for each of the valid names for the enumer-
ation. Every instance has one of the namesin thelist. This property isintended to be overriden by every sub-
class. It needs no explicit realization in the enumeration class. The name property is the name of an instance.
It needs no explicit realization. The uniqueness constraint ison nane. Thei sVal i d constraint checks that
the name of the instance is valid. There is typically no need to override the uniqueness constraint or the
i sVal i d constraint. The constraint is checked as a part of the specification of an instance by aliteral. If the
constraint fails, the literal fails.

D.2.25.1(co) enuneration: isValid

enumeration: Self has isValid ifgy.¢

Self..name is Self..validName.

D.2.25.2(at) enuneration: ucl

enumeration: Self has ucl: Name ifg.¢

Self..name is Name.
D.2.2.5.3 Example

The enumeration color contains three valid names: red, green, and blue. The only realization that isneeded is
for theval i dNanes.

color: Self has validName:Name 1ifg.¢

Name is [red,green,blue]..member.
An instance of the enumeration color is specified by, for example,
Red is color (name:red) .
A literal such as
Huh is color (name:who)

will fail; in other words, the proposition is false. An exception is raised because thei sVal i d constraint is
not met.

A less than operator can be defined for an ordered enumeration. For example,

color: Self has '<’: (Color:color) ifg.¢
Self..name is Self..validName(s)..at I,
Color..name is Self..validName(s)..at J,
I < J.
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D.2.2.6 Identifier

I denti fier isaprimitive classwith its i sEmpty, first, rest, and prefix properties supplied by
axioms.

D.2.26.1(at) identifier: count

Count isthe number of charactersinthei denti fi er.

identifier: Self has count: N ifg.¢

if Self..isEmpty
then
N is O
else
N is 1 + Self..rest..count
endif

D.2.26.2 (op) identifier: ucl

The uniqueness constraintisonfi r st andr est .

identifier: Self has ucl: [First:character,Rest:identifier] ifg.¢

Self..identifier is Rest..prefix (First)
D.2.2.6.3(op) identifier: uc2

The uniqueness constraint ison isEnpt y.

identifier: Self has uc2 ifgy.¢

Self..identifier is ‘'
D.2.26.4(at) identifier: asString
Theidentifier asastring.

identifier: Self has asString:String ifg.s

if Self..isEmpty

then
String is String (isEmpty)

else
String is string(first(Self..first), rest(Self..rest..
asString))

endif

D.2.2.7 integer
D.2.2.7.1 (op) integer: to

TheintegersSel f toN, N >= |, in order.

integer: Self has to:[N,I] ifg.r
N >= Self,
I is Self or I is (Self+l)..to(N)
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D.2.2.7.2(op) integer: ‘[’

Integer divison,B i s Sel f/A.

integer: Self has ‘/':[A,B] ifg.r
pre A !'= 0,
Self super has ‘/’:[A,B]

D.2.2.8 List

D.2.28.1 (at) list(T): asBag

Bag isthe receiver list as abag.

list (T): Self has asBag: (Bag:bag(T)) ifger
Bag is bag with list: Self

D.2.282(at) list(T): asSet

Set isthereceiver list as a set.

1ist (T): Self has asSet: (Set:bag(T)) ifges
Set is set with list: Self

D.2.2.83 (op) list(T): at
Thelist has X at location N, where the first location is O.

list (T): Self has at:[N:integer,X:T] ifg.r
(Self has first:X, N is 0)

or
(Self has rest..at:[M,X], N is M+1)

D.2.284(at) list(T): count

The number of members of thelist.

list(T): Self has count: (N:integer) ifg.¢
if Self..isEmpty
then
N is O
else
N is 1 + Self..rest..count
endif

D.2.2.85 (op) list(T): duplicateFree

TheResult is Sel f withall distinct members.

list(T): Self has duplicateFree: ( Result:1list(T)) ifge¢
if Self == []
then
Result is Self
else
if Self..rest has member (Self..first)
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then
Result is Self..rest..duplicateFree
else
Result is Self..rest..duplicateFree..prefix(Self..first)
endif
endif

D.2.2.8.6(op) list(T): insertlLast
TheResult is Sel f with X added asthe last member.

1ist (T): Self has insertLast: [X:T, Result:list(T)] ifger

if Self == []
then
Result is [X]

else
Result is Self..rest..insertlLast(X)..prefix(Self..first)

endif
D.2.2.8.7 (op) list(T): Iast

Thelist has X as the last member.

list (T): Self has last: (X:T) ifges
(Self == [X])

or
(Self !'= [], Self has rest..last:X)

D.2.288(at) list(T): menber
Result is amember of thelist.

list(T): Self has member: (X:T) ifge
X is Self..first

or
X is Self..rest..member

D.2.2.89(op) list(T): renove
TheResult is Self withthefirst X, if any, removed.

list(T): Self has remove: [X:T(in), Result:1ist(T)] ifger

if Self == []
then
Result is Self
else
if Self..first == X
then
Result is Self..rest
else
Result is Self..rest..remove (X)..prefix(Self..first)
endif
endif
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D.2.2.8.10 (op) list(T): sorted
Result is Sel f sorted.

list (T): Self has sorted: (Result:1list(T)) ifg.s
if Self..isEmpty

then
Result is Self
else
U is Self..first,
Acc 1s accumulator (initial: ([]:[]),final: (LE:GT)),
for Acc all (X is Self..rest..member): (
if X <= T
then
L is Acc..previous..left..prefix (X)
R is Acc..previous..right
else
L is Acc..previous..left
R is Acc..previous..right..prefix (X)
endif,
Acc..current is L:R
)l
Result is LE..sorted + [U] + GT..sorted
endif

D.2.2.8.11(op) list(T): sortedBy

Result is Sel f sorted onthe property values, Pns. Each property must be a single-argument property
of the receiver or a superclass of the receiver.

list (T) : Self has sortedBy: (Pns:list(identifier),Result:1ist(T)) 1ifg.s

pre (forall (Pn is Pns..member)):
(Self..lowClass..superStar has responsibility: R,
R has name: Pn,
R has type..count:1l),
Vs is [ MVs:M where Self has member:M,
MVs is [V where Pns has member:Pn, M has Pn:V]]
Result is [M where Vs..sorted has member: ( :M)]

D.2.2.8.12(op) list(T): ucl

The uniqueness constraintisonfi rst andr est .

list(T): Self has ucl: [First:T,Rest:1ist(T)] ifger
Self..list is Rest..prefix(First)
Acc 1is accumulator (initial:bot,final:T),
for Acc all (Self has member:M) :
(Acc..current is M..lowClass..lub(acc..previous))

D.2.2.8.13(op) list(T): ‘+
Result is the concatenation of Sel f and Cat .

list(T): Self has ‘+': [Cat:1ist(T),Result:1ist(T)] ifger
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if Self..isEmpty
then
Result is Cat
else
Result is (Self..rest + Cat)..prefix(Self..first)
endif

D.2.29.1 (op) real: ‘I’

Red division,B i s Sel f/A.

integer: Self has ‘/':[A,B] ifg.r

D.2.2.10 Set

pre A !'= 0.0,
Self super has ‘/':[A,B]

D.2.2.10.1(at) set(T): asBag

Bag isthe receiver set asabag.

set (T

) : Self has asBag: (Bag:bag(T)) ifges
Bag is bag with list(Self..list)

D.2.2.10.2 (at) set(T): asList

Li st isthereceiver set asalist.

set (T): Self has asList: (List:1ist(T)) ifger

List is Self..list

D.2.2.10.3 (at) set(T): choice

One of the members.

set (T

) : Self has choice: (X:T) ifges
X is Self..list..first

D.2.2.10.4 (op) set(T): groupedBy

Resul t isasubset of the receiver set. Each member of the subset has the same values for the properties,
Pns. Each property must be a single-argument property of the receiver or a superclass of the receiver.

set(T): Self has groupedBy: [Pns:list(identifier) (in),Result:set (T) ]

ifger
pre

(forall (Pn is Pns..member)) :

(Self..lowClass..superStar has responsibility: R,
R has name: Pn,
R has type..count:1l),

Divisors is { PnVs where

Self has member: M,
PnVs is [ Pn:V where Pns has member: Pn, M has Pn:V]},

Divisors has choice: D,
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Result is { M where
Self has member: M,
forall (D has member: (Pn:V)): (M has Pn:V)}

D.2.2.10.5(op) set(T): insert

The set with X added.

set (T): Self has insert:[X:T,Result:set(T)] ifgr
Result is set with list(Self..list..prefix (X))

D.2.2.10.6 (op) set(T): insertLast

The set with X added.

set (T): Self has insertlLast:[X:T,Result:set(T)] ifg.s
Result is Self..insert (X)

D.2.2.10.7(op) set(T): intersectsWth

Trueif the receiver has at least one element in common with the argument.

set (T) : Self has intersectsWith:[Set:set (T)] ifger

Self has member:X,
Set has member:X

D.2.2.10.8 (op) set(T): isSubsetf

Trueif the receiver is a subset of the argument.

set (T): Self has isSubsetOf:[Set:set (T)] ifgesr

forall (Self has member:X, Set has member:X)
D.2.2.109(op) set(T): renove

The set with X removed.

set (T): Self has remove: [X:T,Result:set (T)] ifgyer
Result is set with list(Self..list..remove (X))

D.2.2.10.10(at) set(T): list

Thelist property is overridden in order to indicate it is a uniqueness constraint.

set (T): Self has list:( List:1list(T) ) ifger
Self super has list: List

D.2.2.10.11(at) set(T): rest

The rest of the members, all but the choice.

set (T): Self has rest: (Xs:set(T)) ifger
Xs is set with list(Self..list..rest)
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D.2.2.10.12(at) set(T): ucl

The uniqueness constraint ison list.

set (T): Self has ucl: (List:1list(T)) ifger

Self..list is List..duplicateFree..sorted
D.2.2.10.13(op) set(T): ‘+

Resul t istheunion of Sel f and Set .

set (T): Self has ‘+’:[Set:set(T),Result:set(T)] ifgr

Result is set (X where Self has member:X or Set has member:X)
D.2.2.10.14 (op) set (T): ‘*’

Resul t istheintersection of Sel f and Set .

set (T): Self has ‘*':[Set:set(T),Result:set(T)] ifg.r

Result is set (X where Self has member:X, Set has member:X)
D.2.2.10.15(op) set(T): ‘-’

Resul t isthe set difference, Sel f m nus Set .

set (T): Self has ‘*':[Set:set(T),Result:set(T)] ifg.s

Result 1s set (X where Self has member:X, not Set has member:X)
D.2.2.11 String
Stri ng isaprimitiveclasswithits i sEmpty, first, rest, and prefix properties supplied by axioms.
D.2.2.11.1 (op) string: at

The string has character C at location N, where the first location is 0.

string: Self has at:[N:integer,C:character] ifg.¢
(Self has first:C, N is 0)
or
(Self has rest..at:[M,C], N is M+1)

D.2.2.11.2 (op) string: count

Count isthe number of charactersin the string.

string: Self has count: N ifg.¢
if Self..isEmpty
then
N is O
else
N is 1 + Self..rest..count
endif
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D.2.2.11.3(op) string: indexCk

Finds the index of a substring.

string: Self has indexOf: [String:string,At:integer] ifg.¢
At is 0..to(Self..count - String..count),

forall (I is 0..to(String..count - 1)) :(Self..at (At+I) ==
String..at (I))

D.2.2.11.4 (op) string: substring

Extracts a substring.

string: Self has substring: [At:integer,Count:integer, SubString:string]
ifger
pre (At >= 0),
pre (Count >= 0),
pre (At + Count <= Self..count),
Acc is accumulator (initial:””,final:Subtring),
for Acc all (I is 1..to(Count)):

(acc..current is acc..previous..prefix(Self..at (At + Count - I))
D.2.2.11.5(op) string: ucl

The uniqueness constraintisonfirst andrest .

string: Self has ucl: [First:character,Rest:string] ifg.r

Self..string is Rest..prefix(First)
D.2.2.11.6 (op) string: uc?2

The uniqueness constraintisoni sEnpty.

string: Self has uc2 ifg.¢

A\W74

Self..string is
D.2.2.11.7(op) string: ‘+

Resul t isthe concatenation of Sel f and Cat .

string: Self has ‘+’: [Cat:string,Result:string] ifg.¢

if Self..isEmpty

then

Result is Cat
else

Result is (Self..rest + Cat)..prefix(Self..first)
endif
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